Symposium Program


Monday, July 17, 2017

  • 8:00-9:00 AM - Registration/Coffee
  • 9:00-9:30 AM - Welcome
  • 9:30-10:30 AM - Neuromorphic Community Overview Keynote Presentation: Catherine Schuman
  • 10:30-11:00 AM - Break
  • 11:00 AM-12:05 PM - Presentations
    • 11:00-11:25 AM - “Efficient Hardware Implementation of Cellular Neural Networks with Powers-of-Two Based Incremental Quantization” -- Xiaowei Xu, Qing Lu, Tianchen Wang, Jinglan Liu, Yu Hu and Yiyu Shi
    • 11:25-11:50 AM - “A Multi-Level Optimization Framework for Efficient FPGA-Based Cellular Neural Network Implementation” -- Zhongyang Liu, Shaoheng Luo, Xiaowei Xu, Yiyu Shi and Cheng Zhuo
    • 11:50 AM-12:05 PM - “Neuromorphic Navigation with DANNA” – J. Parker Mitchell, Grant Bruer, and Mark Dean
  • 12:05-1:30 PM - Working Lunch - Keynote: “Nexus of Machine Learning, Neuromorphic Computing, High Performance Computing, and the Million Veteran Program (MVP)” - Dimitri Kusnezov
  • 1:30-3:10 PM - Presentations
  • 3:10-3:30 PM - Break
  • 3:30-4:00 PM - Poster Slam
  • 4:00-5:30 PM - Poster/Demo Session
  • Adjourn at 5:30 PM
  • 6:00-8:00 PM - Dinner at The Lonesome Dove in Knoxville, sponsored by Knowm and Duke University

Tuesday, July 18, 2017

  • 8:00-9:00 AM - Registration/Coffee
  • 9:00-9:10 AM - Welcome/Recap
  • 9:10-10:10 AM - Keynote Presentation: "Research and user capabilities at ORNL’s Center for Nanophase Materials Sciences" -- Hans Christen
  • 10:10-10:30 AM - Break
  • 10:30 AM -12:15 PM - Presentations
    • 10:30-10:55 AM - “Improving Neuromorphic Computing Efficiency with Sparse and Light Neural Networks” – Yiran Chen
    • 10:55-11:20 AM - “From Meta-Stable Switch Collections to Compositional Machine Learning” – Alex Nugent and Tim Molter
    • 11:20-11:45 AM - “Spatio-Temporal Features on an Energy Budget: Transfer Learning with Deep CNNs and Reservoirs” -- Dillon Graham, Seyed Hamed F. Longroudi, Christopher Kanan, Dhireesha Kudithipudi
    • 11:45 AM-12:00 PM - “From Topological Skyrmion to Biological Spike: Developing All-Skyrmion Spiking Neural Network” – Zhezhi He and Deliang Fan
    • 12:00-12:15 PM - “Memristive Nanowire Networks” - Jack Kendall and Juan Nino
  • 12:15-1:30 PM - Working Lunch - Importance of Co-Design
  • 1:30-2:30 PM - Keynote Presentation: "Inspired by the Brain: Computing from Architecture to Devices" – Stan Williams
  • 2:30-3:00 PM - Break
  • 3:00-4:15 PM - Presentations
    • 3:00-3:25 PM - “When Energy Efficient Spike-Based Temporal Encoding Meets Resistive Crossbar: From Circuit Design to Application” -- Chenyuan Zhao, Jialing Li, Hongyu An, and Yang Yi
    • 3:25-3:50 PM - “Evaluating Online-Learning in Memristive Neuromorphic Circuits” - Austin Wyer, Md Musabbir Adnan, Bon Woong Ku, Sung Kyu Lim, Catherine D. Schuman, Raphael C. Pooser and Garrett S. Rose
    • 3:50-4:15 PM - “IMC: Energy-Efficient In-Memory Convolver for Accelerating Binarized Deep Neural Network” -- Shaahin Angizi and Deliang Fan
  • 4:15-5:00 PM - Posters/Demos
  • 5:00 PM - Adjourn – Dinner on your own

Wednesday, July 19, 2017

  • 8:00-9:00 AM - Registration/Coffee
  • 9:00-9:10 AM - Welcome/Recap
  • 9:10-10:10 AM - Keynote Presentation: “The DOE Neuromorphic Computing Research Program” - Robinson Pino
  • 10:10-10:40 AM - Break
  • 10:40-11:30 AM - Presentations
    • 10:40-11:05 AM - “3D Memristor-based Adjustable Deep Recurrent Neural Network with Programmable Attention Mechanism” – Hongyu An and Yang Yi
    • 11:05-11:30 AM - “Monolithic 3D IC Design for Deep Neural Networks” -- Kyungwook Chang, Deepak Kadetotad, Yu Cao, Jae-Sun Seo and Sung-Kyu Lim
  • 11:30 AM - 1:00 PM - Working Lunch - Paths Forward
  • 1:00-1:40 PM - Presentatations
  • 1:40-2:05 PM - “Memristor Crossbar Based Winner Take All Circuit Design for Self-organization” – Raqibul Hasan and Tarek Taha
  • 2:05-2:30 PM - “Peptide-doped lipid membranes as synaptic mimics for neuromorphic computing” – Pat Collier, Andy Sarles, and Joseph Najem
  • 2:30-3:00 PM - End Remarks
  • 3:00 - Adjourn

Contact: Thomas Potok, potokte "at" ornl.gov

© 2015 Oak Ridge National Laboratory

Back to top