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What our group looked like in 5/2015

Katie and Doug developed NIDA:

   - Simulator
   - Custom applications
   - Custom EO
   - Custom visualization (Meg)

Garrett developed mrDANNA:

   - Memristor modeling
   - Simulator in SPICE 
      (Gangotree)
   - Hand-tooled networks

Mark developed DANNA:

   - FPGA Implementation (Chris)
   - Hand-tooled networks
   - Communications board 
(Jason)



What it looks like now
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You've seen it in three of our talks here
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What is in this talk

● What an architecture means in our software stack.
● The structure of an application in this stack.
● How to put “learning” into its appropriate place.
● Some lessons learned with respect to software 

and a project of the scope of this one.



What an architecture means

The architecture encompasses the computing 
model, constraints and connectivity.

● 3D
● Analog
● Synapses defned by 

Euclidean distance.

NIDA

● 2D
● Digital
● Synapses programmable 

but constrained.

DANNA

● 2D
● Mixed Analog/Digital
● Synapses programmable 

but constrained.

mrDANNA



What an architecture means

Within the software stack, the architecture must 
defne a network and a device.

● Serialize / Deserialize
● Defne inputs & outputs
● Primitives for learning   

     (more on this later)

Network ≈ “Program” Device ≈ “Processor”

● Load / Pull Network
● Apply input charge events
● Read output charge events
● Run
● Capture State



Within the core, an instance drives execution.

● Start job
● Execute
● Stop job

Instance

Network Device

● Why do we need this?



● Start job
● Execute
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Gives you a handle on an execution 
● EO / GPU's / Advanced applications
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● Start job

● Execute

● Stop job

Allows the core to implement architecture-
independent functionality.

Instance

Network Device

Stall

Prompt

Capture

Within the core, an instance drives execution.



Architectures end up with four components

Network Device

Execution Unit Visualization

Program Processor

Simulation,
Hardware

Processes events & captures
Static (screenshots)

Live



For example, with DANNA
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The structure of an application.

Our canonical application structure has 5 components:

Application
Library

Read-Only

Per Run

Application
Driver

Neuromorphic
Library

Read-Only

Per Run

Neuromorphic
Driver

Learning
Library

Read-Only

Per Run

Libraries:

Programs:



The structure of an application.

The application library implements the guts
of the application.

Application
Library

Read-Only

Per Run

GetApplicationState()
UpdateApplicationState()
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The structure of an application.

Application
Library

Read-Only

Per Run

Application
Driver

Application Program exists 
without anything 
neuromorphic.

Text on stdin or socket.

Text on stdout.

Text on socket.

Text on socket.



The structure of an application.

The neuromorphic library implements 
instance → application and back

AppState_To_Inputs()
Outputs_To_AppInput()

Neuromorphic
Library

Read-Only

Per Run



The structure of an application.

Neuromorphic Program 
interacts with application

over sockets, and
“runs” an instance.

Text on socket.
Neuromorphic

Library
Read-Only

Per Run

Neuromorphic
Driver

Text on socket.
Instance

Network Device



The structure of an application.
Application program and neuromorphic program

compose very nicely for testing and demonstration.
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The structure of an application.
Application program and neuromorphic program
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The structure of an application.

Learning library expresses application needs to the

learning layer, and defnes ftness: instance → value.
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Per Run



The structure of an application.

All of the libraries are compiled with a driver from
the Learning Module to develop networks.

Neuromorphic
Library

Read-Only

Per Run

Learning
Library

Read-Only

Per Run

Learning
Library

Read-Only

Per Run

Learning driver
from the 

Learning Module

Instance
Network DeviceInstance
Network DeviceInstance
Network DeviceInstance
Network DeviceInstance

Network DeviceInstance
Network DeviceInstance
Network Device

Instance
Network Device

Instance
Network DeviceInstance
Network DeviceInstance
Network DeviceInstance
Network DeviceInstance
Network DeviceInstance
Network DeviceInstance

Network Device
Instance

Network Device



Current Applications

● Control
– Pole, Flappy, RoboNAV, Helicopter, FF-SA

● Classifcation
– UCI Database (Iris, Cancer, etc.), Audio

● Security
– Anomaly Detection (e.g. Numenta)

● Microapplications: Benchmarking & Composition
– Binary Ops, Pulse Comparison



RoboNAV on DANNA



Pole Balancer on NIDA



Application Support: Neuro-IO

● Map application state values to neuromorphic 
input spikes:
– Rate-Coding, Binning, Charge Values

– And their combination.

● Ditto output spikes 
– Counting

– Voting

– Binning

x
dx
θ

dθ
left / right

Device

Pole Balancing
Application

Neuro-IO



Learning  – Where does it go?

● Current learning techniques:
– EO: Evolutionary Optimization
– Unsupervised Learning (STDP)
– Supervised Learning (Ditto)

Mature enough
to be a module

Still in
“research” mode

Mature enough
to be a module



Learning  – Where does it go?

● The Current Learning Module
– Manages epochs & populations

– Directs crossover & mutations, but doesn't do them.

– Manages parallelism, both within a machine and within 
a cluster (or Titan).



Learning  – Where does it go?

● The Current Learning Module
– Manages epochs & populations

– Directs crossover & mutations, but doesn't do them.

– Manages parallelism, both within a machine and within 
a cluster (or Titan).

Learning
ModuleApplication

Architecture
(Network)Network

Complexity

Report Fitness

Get Random network
Do Crossover
Do Mutation

Network

Calculate Fitness



Learning  – Where does it go?

● The problem with this approach
– Large burden on the architecture developer.

– Does not give the learning module the ability to do 
anything fancy.
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Learning  – Where does it go?

● Instead – put a parameterized graph engine 
into the learning module.
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Learning  – Where does it go?

● Instead – put a parameterized graph engine 
into the learning module.

Learning
ModuleApplication

Architecture
(Network)Network

Complexity

Report Fitness

Graph

Network

Calculate Fitness

Graph properties

Manage general graphs:
Creation

Crossover
Mutation

Reduces the
burden here.

Allows us to
focus here:



Learning  – Status

● Still in a feature branch – waiting on mrDANNA.

● Much easier to explore architectural features.

● Poised to exploit speciation / minimal 
augmenting topologies (NEAT & beyond).

● Still need to explore a more structured 
approach to STDP.



Some lessons learned (high level)

● Performing simultaneous research on a variety 
of areas, and getting them to impact each other 
takes a careful eye on software design.

● There are a lot of un-sexy things that go into a 
successful hardware/software research 
project.

● Figuring out how to program applications on 
neuromorphic computing devices is a larger 
challenge than developing the devices.



Some lessons learned (low level)

● Managing a software team in academia takes 
an iron fst and a thick skin.

● Program like it's 1998...

● One key to success is decomposing your 
research space into units that ft your 
workforce.
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Chart.



A Software Stack for 
Neuromorphic Computing

James S. Plank
Mark E. Dean

Garrett S. Rose
Catherine D. Schuman

July 19, 2017
Neuromorphic Computing Symposium

Knoxville, Tennessee

Thank you
AFRL
DOE
NSF


