A Software Stack for Neuromorphic Computing

James S. Plank
Mark E. Dean
Garrett S. Rose
Catherine D. Schuman

July 19, 2017
Neuromorphic Computing Symposium
Knoxville, Tennessee
What our group looked like in 5/2015

Katie and Doug developed NIDA:
- Simulator
- Custom applications
- Custom EO
- Custom visualization (Meg)

Mark developed DANNA:
- FPGA Implementation (Chris)
- Hand-tooled networks
- Communications board (Jason)

Garrett developed mrDANNA:
- Memristor modeling
- Simulator in SPICE (Gangotree)
- Hand-tooled networks
What it looks like now
You've seen it in three of our talks here.
You've seen it in three of our talks here
You've seen it in three of our talks here
What is in this talk

- What an architecture means in our software stack.
- The structure of an application in this stack.
- How to put “learning” into its appropriate place.
- Some lessons learned with respect to software and a project of the scope of this one.
What an architecture means

The architecture encompasses the computing model, constraints and connectivity.

- **NIDA**
 - 3D
 - Analog
 - Synapses defined by Euclidean distance.

- **DANNA**
 - 2D
 - Digital
 - Synapses programmable but constrained.

- **mrDANNA**
 - 2D
 - Mixed Analog/Digital
 - Synapses programmable but constrained.
What an architecture means

Within the software stack, the architecture must define a **network** and a **device**.

Network ≈ “Program”
- Serialize / Deserialize
- Define inputs & outputs
- Primitives for learning (more on this later)

Device ≈ “Processor”
- Load / Pull Network
- Apply input charge events
- Read output charge events
- Run
- Capture State
Within the core, an **instance** drives execution.

- Start job
- Execute
- Stop job

- Why do we need this?
Within the core, an instance drives execution.

Gives you a handle on an execution

- EO / GPU's / Advanced applications
Within the core, an **instance** drives execution.

- Start job
- Execute
- Stop job

 Allows the core to implement architecture-independent functionality.
Architectures end up with four components

<table>
<thead>
<tr>
<th>Network</th>
<th>Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program</td>
<td>Processor</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Execution Unit</td>
<td>Visualization</td>
</tr>
<tr>
<td>Simulation,</td>
<td>Processes events & captures</td>
</tr>
<tr>
<td>Hardware</td>
<td>Static (screenshots)</td>
</tr>
<tr>
<td></td>
<td>Live</td>
</tr>
</tbody>
</table>
For example, with DANNA
For example, with DANNA
The structure of an application.

Our canonical application structure has 5 components:

Libraries:

- Application Library
- Neuromorphic Library
- Learning Library

Programs:

- Application Driver
- Neuromorphic Driver
The structure of an application.

The application library implements the guts of the application.

GetApplicationState()
UpdateApplicationState()
The structure of an application.

The application library implements the guts of the application.

GetApplicationState()
UpdateApplicationState()
The structure of an application.

Application Program exists without anything neuromorphic.

- Application Library (Read-Only)
- Application Driver
- Text on stdin or socket.
- Text on stdout.
- Text on socket.
- Text on socket.
The structure of an application.

The neuromorphic library implements instance → application and back

AppState_To_Inputs()
Outputs_To_AppInput()
The structure of an application.

Neuromorphic Program interacts with application over sockets, and "runs" an instance.
The structure of an application.

Application program and neuromorphic program compose very nicely for testing and demonstration.
The structure of an application.

Application program and neuromorphic program compose very nicely for testing and demonstration.
The structure of an application.

Learning library expresses application needs to the learning layer, and defines fitness: instance \rightarrow value.
The structure of an **application**.

All of the libraries are compiled with a driver from the Learning Module to develop networks.
Current Applications

• Control
 – Pole, Flappy, RoboNAV, Helicopter, FF-SA

• Classification
 – UCI Database (Iris, Cancer, etc.), Audio

• Security
 – Anomaly Detection (e.g. Numenta)

• Microapplications: Benchmarking & Composition
 – Binary Ops, Pulse Comparison
RoboNAV on DANNA
Pole Balancer on NIDA
Application Support: Neuro-IO

- Map application state values to neuromorphic input spikes:
 - Rate-Coding, Binning, Charge Values
 - And their combination.

- Ditto output spikes
 - Counting
 - Voting
 - Binning
Learning – Where does it go?

- Current learning techniques:
 - EO: Evolutionary Optimization
 - Unsupervised Learning (STDP)
 - Supervised Learning (Ditto)

Still in “research” mode

Mature enough to be a module
Learning – Where does it go?

- The Current Learning Module
 - Manages epochs & populations
 - Directs crossover & mutations, *but doesn't do them.*
 - Manages parallelism, both within a machine and within a cluster (or Titan).
Learning – Where does it go?

- The Current Learning Module
 - Manages epochs & populations
 - Directs crossover & mutations, *but doesn't do them.*
 - Manages parallelism, both within a machine and within a cluster (or Titan).

![Diagram](Diagram with nodes: Application, Learning Module, Architecture (Network). Arrows indicate the flow: Network complexity, Network report fitness, Get Random network, Do Crossover, Do Mutation.)
Learning – Where does it go?

• The problem with this approach
 - Large burden on the architecture developer.
 - Does not give the learning module the ability to do anything fancy.

![Diagram showing the relationship between Application, Learning Module, and Architecture (Network).]

- Application
- Learning Module
- Architecture (Network)
• Instead – put a parameterized graph engine into the learning module.
• Instead – put a parameterized graph engine into the learning module.
Learning – Where does it go?

- Instead – put a parameterized graph engine into the learning module.
Learning – Status

- Still in a feature branch – waiting on mrDANNA.
- Much easier to explore architectural features.
- Poised to exploit speciation / minimal augmenting topologies (NEAT & beyond).
- Still need to explore a more structured approach to STDP.
Some lessons learned (high level)

- Performing simultaneous research on a variety of areas, and getting them to impact each other takes a careful eye on software design.

- There are a lot of un-sexy things that go into a successful hardware/software research project.

- Figuring out how to program applications on neuromorphic computing devices is a larger challenge than developing the devices.
Some lessons learned (low level)

- Managing a software team in academia takes an iron fist and a thick skin.
- Program like it's 1998...
- One key to success is decomposing your research space into units that fit your workforce.
Software Org Chart.

Neuro

Architectures

NIDA

mrDANNA

DANNA

Apps

Sim

Viz

Sim

Viz

Sim

Pole

Robo

Flappy

Copter

Microapp

Anomaly

Classify

Reservoir

Hardware

Software Org Chart.
A Software Stack for Neuromorphic Computing

James S. Plank
Mark E. Dean
Garrett S. Rose
Catherine D. Schuman

July 19, 2017
Neuromorphic Computing Symposium
Knoxville, Tennessee