
A Software Stack for
Neuromorphic Computing

James S. Plank
Mark E. Dean

Garrett S. Rose
Catherine D. Schuman

July 19, 2017
Neuromorphic Computing Symposium

Knoxville, Tennessee

What our group looked like in 5/2015

Katie and Doug developed NIDA:

 - Simulator
 - Custom applications
 - Custom EO
 - Custom visualization (Meg)

Garrett developed mrDANNA:

 - Memristor modeling
 - Simulator in SPICE
 (Gangotree)
 - Hand-tooled networks

Mark developed DANNA:

 - FPGA Implementation (Chris)
 - Hand-tooled networks
 - Communications board
(Jason)

What it looks like now

Software
Core

Applications Learning

Architectures

You've seen it in three of our talks here

DANNA

EO

Software
Core

Applications Learning

Architectures

You've seen it in three of our talks here

Software
Core

NIDA

mrDANNA

EO

Applications Learning

Architectures

You've seen it in three of our talks here

mrDANNA

XOR
EO + STDP

Software
Core

Applications Learning

Architectures

What is in this talk

● What an architecture means in our software stack.
● The structure of an application in this stack.
● How to put “learning” into its appropriate place.
● Some lessons learned with respect to software

and a project of the scope of this one.

What an architecture means

The architecture encompasses the computing
model, constraints and connectivity.

● 3D
● Analog
● Synapses defned by

Euclidean distance.

NIDA

● 2D
● Digital
● Synapses programmable

but constrained.

DANNA

● 2D
● Mixed Analog/Digital
● Synapses programmable

but constrained.

mrDANNA

What an architecture means

Within the software stack, the architecture must
defne a network and a device.

● Serialize / Deserialize
● Defne inputs & outputs
● Primitives for learning

 (more on this later)

Network ≈ “Program” Device ≈ “Processor”

● Load / Pull Network
● Apply input charge events
● Read output charge events
● Run
● Capture State

Within the core, an instance drives execution.

● Start job
● Execute
● Stop job

Instance

Network Device

● Why do we need this?

● Start job
● Execute
● Stop job

Instance

Network Device

Gives you a handle on an execution
● EO / GPU's / Advanced applications

Instance

Network Device

Instance

Network Device

Instance

Network Device

Instance

Network Device

Instance

Network Device

Instance

Network Device

Instance

Network Device

Within the core, an instance drives execution.

● Start job

● Execute

● Stop job

Allows the core to implement architecture-
independent functionality.

Instance

Network Device

Stall

Prompt

Capture

Within the core, an instance drives execution.

Architectures end up with four components

Network Device

Execution Unit Visualization

Program Processor

Simulation,
Hardware

Processes events & captures
Static (screenshots)

Live

For example, with DANNA

Execution Unit

Instance

Network Device

Simulator FPGA VLSI

Load packets
Input packets

Run packets Capture packets
Output packets

Captures

Visualization

Screenshots Javascript

Execution Unit

Instance

Network Device

Simulator FPGA VLSI

Load packets
Input packets

Run packets Capture packets
Output packets Captures

Visualization

Screenshots Javascript

For example, with DANNA

The structure of an application.

Our canonical application structure has 5 components:

Application
Library

Read-Only

Per Run

Application
Driver

Neuromorphic
Library

Read-Only

Per Run

Neuromorphic
Driver

Learning
Library

Read-Only

Per Run

Libraries:

Programs:

The structure of an application.

The application library implements the guts
of the application.

Application
Library

Read-Only

Per Run

GetApplicationState()
UpdateApplicationState()

The structure of an application.

The application library implements the guts
of the application.

Application
Library

Read-Only

Per Run

GetApplicationState()
UpdateApplicationState()

The structure of an application.

Application
Library

Read-Only

Per Run

Application
Driver

Application Program exists
without anything
neuromorphic.

Text on stdin or socket.

Text on stdout.

Text on socket.

Text on socket.

The structure of an application.

The neuromorphic library implements
instance → application and back

AppState_To_Inputs()
Outputs_To_AppInput()

Neuromorphic
Library

Read-Only

Per Run

The structure of an application.

Neuromorphic Program
interacts with application

over sockets, and
“runs” an instance.

Text on socket.
Neuromorphic

Library
Read-Only

Per Run

Neuromorphic
Driver

Text on socket.
Instance

Network Device

The structure of an application.
Application program and neuromorphic program

compose very nicely for testing and demonstration.

Neuromorphic
Driver

Instance

Network Device

Application
Driver

Neuromorphic
Library

Read-Only

Per Run

Application
Library

Read-Only

Per Run

The structure of an application.
Application program and neuromorphic program

compose very nicely for testing and demonstration.

Neuromorphic
Library

Read-Only

Per Run

Neuromorphic
Driver

Instance

Network Device

Application
Library

Read-Only

Per Run

Application
Driver

The structure of an application.

Learning library expresses application needs to the

learning layer, and defnes ftness: instance → value.

Learning
Library

Read-Only

Per Run

The structure of an application.

All of the libraries are compiled with a driver from
the Learning Module to develop networks.

Neuromorphic
Library

Read-Only

Per Run

Learning
Library

Read-Only

Per Run

Learning
Library

Read-Only

Per Run

Learning driver
from the

Learning Module

Instance
Network DeviceInstance
Network DeviceInstance
Network DeviceInstance
Network DeviceInstance

Network DeviceInstance
Network DeviceInstance
Network Device

Instance
Network Device

Instance
Network DeviceInstance
Network DeviceInstance
Network DeviceInstance
Network DeviceInstance
Network DeviceInstance
Network DeviceInstance

Network Device
Instance

Network Device

Current Applications

● Control
– Pole, Flappy, RoboNAV, Helicopter, FF-SA

● Classifcation
– UCI Database (Iris, Cancer, etc.), Audio

● Security
– Anomaly Detection (e.g. Numenta)

● Microapplications: Benchmarking & Composition
– Binary Ops, Pulse Comparison

RoboNAV on DANNA

Pole Balancer on NIDA

Application Support: Neuro-IO

● Map application state values to neuromorphic
input spikes:
– Rate-Coding, Binning, Charge Values

– And their combination.

● Ditto output spikes
– Counting

– Voting

– Binning

x
dx
θ

dθ
left / right

Device

Pole Balancing
Application

Neuro-IO

Learning – Where does it go?

● Current learning techniques:
– EO: Evolutionary Optimization
– Unsupervised Learning (STDP)
– Supervised Learning (Ditto)

Mature enough
to be a module

Still in
“research” mode

Mature enough
to be a module

Learning – Where does it go?

● The Current Learning Module
– Manages epochs & populations

– Directs crossover & mutations, but doesn't do them.

– Manages parallelism, both within a machine and within
a cluster (or Titan).

Learning – Where does it go?

● The Current Learning Module
– Manages epochs & populations

– Directs crossover & mutations, but doesn't do them.

– Manages parallelism, both within a machine and within
a cluster (or Titan).

Learning
ModuleApplication

Architecture
(Network)Network

Complexity

Report Fitness

Get Random network
Do Crossover
Do Mutation

Network

Calculate Fitness

Learning – Where does it go?

● The problem with this approach
– Large burden on the architecture developer.

– Does not give the learning module the ability to do
anything fancy.

Learning
ModuleApplication

Architecture
(Network)Network

Complexity

Report Fitness

Get Random network
Do Crossover
Do Mutation

Network

Calculate Fitness

Learning – Where does it go?

● Instead – put a parameterized graph engine
into the learning module.

Learning
ModuleApplication

Architecture
(Network)Network

Complexity

Report Fitness

Graph

Network

Calculate Fitness

Graph properties

Manage general graphs:
Creation

Crossover
Mutation

Learning – Where does it go?

● Instead – put a parameterized graph engine
into the learning module.

Learning
ModuleApplication

Architecture
(Network)Network

Complexity

Report Fitness

Graph

Network

Calculate Fitness

Graph properties

Manage general graphs:
Creation

Crossover
Mutation

Reduces the
burden here.

Learning – Where does it go?

● Instead – put a parameterized graph engine
into the learning module.

Learning
ModuleApplication

Architecture
(Network)Network

Complexity

Report Fitness

Graph

Network

Calculate Fitness

Graph properties

Manage general graphs:
Creation

Crossover
Mutation

Reduces the
burden here.

Allows us to
focus here:

Learning – Status

● Still in a feature branch – waiting on mrDANNA.

● Much easier to explore architectural features.

● Poised to exploit speciation / minimal
augmenting topologies (NEAT & beyond).

● Still need to explore a more structured
approach to STDP.

Some lessons learned (high level)

● Performing simultaneous research on a variety
of areas, and getting them to impact each other
takes a careful eye on software design.

● There are a lot of un-sexy things that go into a
successful hardware/software research
project.

● Figuring out how to program applications on
neuromorphic computing devices is a larger
challenge than developing the devices.

Some lessons learned (low level)

● Managing a software team in academia takes
an iron fst and a thick skin.

● Program like it's 1998...

● One key to success is decomposing your
research space into units that ft your
workforce.

Neuro

Apps

Architectures

Learning

Pole Robo Flappy Anomaly ClassifyCopter Microapp

NIDA mrDANNA DANNA

Reservoir

Sim Viz Sim Viz Sim

Hardware

Software
Org

Chart.

A Software Stack for
Neuromorphic Computing

James S. Plank
Mark E. Dean

Garrett S. Rose
Catherine D. Schuman

July 19, 2017
Neuromorphic Computing Symposium

Knoxville, Tennessee

Thank you
AFRL
DOE
NSF

