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DNN Hardware Design
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« Challenges

— The computations require large amount of energy
— Excessive memory is needed to store the weights
— Prohibitive wire overhead due to a large number of connections

Optimization for both architecture and physical implementation is required



Monolithic 3D IC (M3D)

 Placing cells in 3D space
— Sequentially fabricating transistors on multiple tiers
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« Utilizing Monolithic Inter-tier Vias (MIVs) to connect cells on
different tiers. Compared to Through Silicon Vias (TSV)
— Size: MIV << TSV -> Achieve higher MIV density
— RC: MIV << TSV -> Achieve higher performance




M3D Implementation Methodology

« Optimization on physical implementation
* No EDA tools supporting 3D IC implementation
Use tricks to place cells in 3D space with 2D tools

« Shrunk2D M3D implementation flow

Implement 2D design
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DNN for Speech Recognition

4 hidden layers with
1024 neurons per Iayer
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 Training
— Obijective function: E=—zti-ln(yi)
— Weight update function: (vi?;)m: Wii+Cy |- tr(awy;) +m(awyy) |
 Classification

— Feed-forward computation
— Matrix-vector multiplication of weight matrices and neuron vectors



Coarse-Grain Sparsification (CGS)

 Architectural optimization for hardware implementation by
Memory compression
— Connections between two consecutive layers are compressed in block-

wise manner
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International Conference on Computer-Aided Design, 2016



DNN Architecture Description

« Operating one layer at a time - requires multiple iterations

« Target compression rate of CGS - 87.5%
Processing one layer at a time
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DNN Architecture Description

« DNN with CGS block size of 16x16 (DNN CGS-16) and 64x64 (DNN
CGS-64) are selected for the experiment of this paper

DNN CGS-16 | _ DNN CGS-64

block size 16x16 64x64
compression rate 87.5% 87.5%
size of coefficient register file 15,360 bits 640 bits
size of SRAM for weights 6Mb 6Mb

phoneme error rate 19.8% 19.8%




Experimental Setup

* Designs: DNN CGS-16 and DNN CGS-64
« Technology: TSMC 28nm (CLN28HPM)
 Clock frequency: 400MHz

« Initial standard cell density: 65%

* Memory floorplans for M3D design
— M3D-both: Memory blocks exist on both tiers
— M3D-one: Memory blocks are placed on a single tier (bottom tier)




Die Shots
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M3D-both vs. M3D-one

« Examine the impact of memory floorplan

| | CGS16M3D-both CGS-16 M3D-one

footprint (um) 1411x1411 1010x984 -50.1% 996x1322 -33.9%
cell area (mm?) 0.505 0.431 -14.6% 0.511 1.1%
wirelength (m) 12.089 8.469 -29.9% 12.225 1.1%
MIV count - 77,536 1,776
pin cap (pF) 943.3 788.0 -16.5% 1,004.1 6.4%
wire cap (pF) 2,216.8 1,440.8 -35.0% 2,087.4 -5.8%
total cap (pF) 3,160.1 2,228.7 -29.5% 3,091.6 -2.2%
| | CGS6MiDboth | CGS-16M3Done
internal power (mW) 91.3 76.7 -16.0% 90.3 -1.1%
switching power (mW) 48.6 31.6 -35.0% 46.5 -4.3%
leakage power (mW) 1.3 1.2 -6.6% 1.3 0.5%
total power (mW) 141.1 109.6 -22.3% 138.0 -2.2%

M3D-both shows better performance in all aspects
N



M3D-both vs. M3D-one (cont’d)

* Footprint of M3D-one is determined by memory blocks

— Since “area of memory > area of logics”, footprint reduction of M3D-one is
smaller than M3D-both

* In M3D-one, logic gates are spread out across the top tier, we
increases wire-length

bottom tier bottom tier

M3D-both M3D-one

Footprint management and tier partitioning is important

when there are large memory modules
T



M3D-both vs. M3D-one (cont’d)

* Dynamic power breakdown
den = Py + Pint

- Psw,wire + Psw,pin + Pint

2
= aout(Cwire + Cpin)VDD fclk + Pint .
Standard cell area also depends on wire-length

Depends on Dependson __, ;0 longer wire-length requires higher drive-

wire-length standard cell area o strength cells

L L 60k -

40k ~ 1
1 30k 1

5 | N |

X0-x0.8 | x1-x1.7 | x2-x4 x5-x9 | x11-x16

0-50 | 50-100 | 100-150|150-200|200-250| > 250

240k

]
=]
o
=

Cell Count

Number of Wires

20K +

Wire-length (um) Standard Cell Drive-Strength

I 20 Il V13D-botn [ M3D-one| | 20 [ M3D-both [ M3D-one |

Less power saving of M3D-one is attributed to the less footprint reduction
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CGS-16 vs. CGS-64

« Examine the impact of DNN architecture

| | CcGS162D | CGS-16M3D-both | CGS-642D |  CGS-64 M3D-both

footprint (um) 1411x1411  1010x984 -50.1% 1411x1411  1010x984 -50.1%

cell area (mm?) 0.505 0.431 -14.6% 0.314 0.269 -14.3%

wirelength (m) 12.089 8.469 -29.9% 5.631 3.734 -33.7%

MIV count - 77,536 - 48,636

pin cap (pF) 943.3 788.0 -16.5% 520.8 390.8 -25.0%

wire cap (pF) 2,216.8 1,440.8 -35.0% 920.1 573.7 -37.7%

total cap (pF) 3,160.1 2,228.7 -29.5% 1,440.9 964.4 -33.1%
| COS162D | CGS-6M3D-both | CGS642D |  CGS-64M3D-both

internal power (mW) 91.3 76.7 -16.0% 86.8 76.1 -12.3%

switching power (mW) 48.6 31.6 -35.0% 41.2 30.2 -26.7%

leakage power (mW) 1.3 1.2 -6.6% 1.1 1.1 -4.7%

total power (mW) 1411 109.6 -22.3% 129.1 107.3 -16.9%




CGS-16 vs. CGS-64 (cont'd)
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Non-dashed: Combinational logics
Dashed: Sequential logics

« Combinational logic occupies more portion in CGS-16
— Due to more complex ‘neuron selection’ logic of CGS-16

« The number of sequential logic does not benefit from M3D

Design with large portion of combinational logics
benefits more from M3D



Feed-Forward Classification

vs. Pseudo-Trainino

Examine the impact of workloads
Feed-forward classification

Training: Current architecture supports only offline training
— Created customized test vector
— Pseudo-training: Feed-forward classification + weight write phases

_ Feed-forward classification Pseudo-training

2D M3D-both 2D M3D-both
internal power (mW) 91.3 76.7 -16.0% 150.4 142.8 -5.1%
switching power (mW) 48.6 31.6 -35.0% 68.4 57.1 -16.6%
leakage power (mW) 1.3 1.2 -6.6% 1.3 1.2 -6.8%
total power (mW) 1411 109.6 -22.3% 220.0 201.0 -8.6%

M3D shows more benefit in feed-forward classification workloads




Feed-Forward Classification

vs. Pseudo-Trainino

* Pseudo-training 250
— Feed-forward classification + weight |
write phases
— Involves more memory operations

— More power consumption on
sequential logics, which cannot be
reduced effectively with M3D

Classification Pseudo Training

I Memory Power [ | Clock Power
[ ] Register Power il Combinational Power

M3D shows bigger impact on the compute-intensive workloads



Conclusion

« M3D effectively reduces the total power consumption of deep
neural network hardware by reducing wirelength and standard
cell area

* DNN with large amount of memory requires memory block
partitioning to maximize total power saving

« M3D shows larger power savings with smaller CGS block sizes
mainly since it consist of more combinational logics

« Compute-intensive classification workload offers more power
saving than memory-intensive training workload. This may not be
true for other DNN architectures, but analysis method used in this
paper is useful to study practical ASIC implementation of DNN




