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DNN Hardware Design 

 

 

 

 

 

• Challenges 

–  The computations require large amount of energy 

–  Excessive memory is needed to store the weights 

–  Prohibitive wire overhead due to a large number of connections 

Optimization for both architecture and physical implementation is required 
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Monolithic 3D IC (M3D) 

• Placing cells in 3D space 

– Sequentially fabricating transistors on multiple tiers 

 

 

 

 

 

 

 

• Utilizing Monolithic Inter-tier Vias (MIVs) to connect cells on 

different tiers. Compared to Through Silicon Vias (TSV) 

– Size: MIV << TSV  Achieve higher MIV density 

– RC:   MIV << TSV  Achieve higher performance  
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M3D Implementation Methodology 

• Optimization on physical implementation 

• No EDA tools supporting 3D IC implementation 

Use tricks to place cells in 3D space with 2D tools 

• Shrunk2D M3D implementation flow 

Shreepad Panth, Kambiz Samadi, Yang Du, and Sung Kyu Lim, "Design and CAD Methodologies for Low Power Gate-level Monolithic 3D ICs," 

IEEE International Symposium on Low Power Electronics and Design, 2014 
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DNN for Speech Recognition 

 

 

 

 

 

 

• Training 

– Objective function: 

– Weight update function: 

• Classification 

– Feed-forward computation 

– Matrix-vector multiplication of weight matrices and neuron vectors 

 

𝐸 = −  𝑡𝑖 ∙ ln (𝑦𝑖)

𝑁
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Coarse-Grain Sparsification (CGS) 

• Architectural optimization for hardware implementation by 

Memory compression 

– Connections between two consecutive layers are compressed in block-

wise manner 

 

 

D. Kadetotad et al., “Efficient Memory Compression in Deep Neural Networks using Coarse-Grain Sparsification for Speech Applications,” IEEE 

International Conference on Computer-Aided Design, 2016 
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DNN Architecture Description 

• Operating one layer at a time – requires multiple iterations 

• Target compression rate of CGS – 87.5% 

 

 

Processing one layer at a time 

Select 12.5%  

of neurons 

128 neurons use 

16 MAC units  

by time sharing 
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DNN Architecture Description 

• DNN with CGS block size of 16x16 (DNN CGS-16) and 64x64 (DNN 

CGS-64) are selected for the experiment of this paper 

parameters DNN CGS-16 DNN CGS-64 

block size 16x16 64x64 

compression rate 87.5% 87.5% 

size of coefficient register file 15,360 bits 640 bits 

size of SRAM for weights 6Mb 6Mb 

phoneme error rate 19.8% 19.8% 
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Experimental Setup 

• Designs: DNN CGS-16 and DNN CGS-64 

• Technology: TSMC 28nm (CLN28HPM) 

• Clock frequency: 400MHz 

• Initial standard cell density: 65% 

• Memory floorplans for M3D design 

– M3D-both: Memory blocks exist on both tiers 

– M3D-one: Memory blocks are placed on a single tier (bottom tier) 
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Die Shots 

DNN CGS-64 
2D M3D-both M3D-one 

DNN CGS-16 
2D M3D-both M3D-one 
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M3D-both vs. M3D-one 

• Examine the impact of memory floorplan 

2D CGS-16 M3D-both CGS-16 M3D-one 

footprint (um) 1411x1411 1010x984 -50.1% 996x1322 -33.9% 

cell area (mm2) 0.505 0.431 -14.6% 0.511 1.1% 

wirelength (m) 12.089 8.469 -29.9% 12.225 1.1% 

MIV count - 77,536 1,776 

pin cap (pF) 943.3 788.0 -16.5% 1,004.1 6.4% 

wire cap (pF) 2,216.8 1,440.8 -35.0% 2,087.4 -5.8% 

total cap (pF) 3,160.1 2,228.7 -29.5% 3,091.6 -2.2% 

2D CGS-16 M3D-both CGS-16 M3D-one 

internal power (mW) 91.3 76.7 -16.0% 90.3 -1.1% 

switching power (mW) 48.6 31.6 -35.0% 46.5 -4.3% 

leakage power (mW) 1.3 1.2 -6.6% 1.3 0.5% 

total power (mW) 141.1 109.6 -22.3% 138.0 -2.2% 

M3D-both shows better performance in all aspects 
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M3D-both vs. M3D-one (cont’d) 

• Footprint of M3D-one is determined by memory blocks 

– Since “area of memory > area of logics”, footprint reduction of M3D-one is 

smaller than M3D-both 

• In M3D-one, logic gates are spread out across the top tier, we 

increases wire-length 

M3D-both M3D-one 

Footprint management and tier partitioning is important  

when there are large memory modules 
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M3D-both vs. M3D-one (cont’d) 

• Dynamic power breakdown 

𝑃𝑑𝑦𝑛 = 𝑃𝑠𝑤 + 𝑃𝑖𝑛𝑡 

          = 𝑃𝑠𝑤,𝑤𝑖𝑟𝑒 + 𝑃𝑠𝑤,𝑝𝑖𝑛 + 𝑃𝑖𝑛𝑡 

          = 𝛼𝑜𝑢𝑡 𝐶𝑤𝑖𝑟𝑒 + 𝐶𝑝𝑖𝑛 𝑉𝐷𝐷
2𝑓𝑐𝑙𝑘 + 𝑃𝑖𝑛𝑡 

Depends on  

standard cell area 
Depends on  

wire-length 

Standard cell area also depends on wire-length 

since longer wire-length requires higher drive-

strength cells  

Less power saving of M3D-one is attributed to the less footprint reduction 
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CGS-16 vs. CGS-64 

• Examine the impact of DNN architecture 

 CGS-16 2D CGS-16 M3D-both CGS-64 2D CGS-64 M3D-both 

footprint (um) 1411x1411 1010x984 -50.1% 1411x1411 1010x984 -50.1% 

cell area (mm2) 0.505 0.431 -14.6% 0.314 0.269 -14.3% 

wirelength (m) 12.089 8.469 -29.9% 5.631 3.734 -33.7% 

MIV count - 77,536 - 48,636 

pin cap (pF) 943.3 788.0 -16.5% 520.8 390.8 -25.0% 

wire cap (pF) 2,216.8 1,440.8 -35.0% 920.1 573.7 -37.7% 

total cap (pF) 3,160.1 2,228.7 -29.5% 1,440.9 964.4 -33.1% 

CGS-16 2D CGS-16 M3D-both CGS-64 2D CGS-64 M3D-both 

internal power (mW) 91.3 76.7 -16.0% 86.8 76.1 -12.3% 

switching power (mW) 48.6 31.6 -35.0% 41.2 30.2 -26.7% 

leakage power (mW) 1.3 1.2 -6.6% 1.1 1.1 -4.7% 

total power (mW) 141.1 109.6 -22.3% 129.1 107.3 -16.9% 
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CGS-16 vs. CGS-64 (cont’d) 

 

 

 

 

 

 

• Combinational logic occupies more portion in CGS-16  

– Due to more complex ‘neuron selection’ logic of CGS-16 

• The number of sequential logic does not benefit from M3D 

 

Non-dashed: Combinational logics 

Dashed: Sequential logics 

Design with large portion of combinational logics 

benefits more from M3D 
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Feed-Forward Classification  

vs. Pseudo-Training 

• Examine the impact of workloads 

• Feed-forward classification 

• Training: Current architecture supports only offline training 

– Created customized test vector 

– Pseudo-training: Feed-forward classification + weight write phases 

 
Feed-forward classification Pseudo-training 

2D M3D-both 2D M3D-both 

internal power (mW) 91.3 76.7 -16.0% 150.4 142.8 -5.1% 

switching power (mW) 48.6 31.6 -35.0% 68.4 57.1 -16.6% 

leakage power (mW) 1.3 1.2 -6.6% 1.3 1.2 -6.8% 

total power (mW) 141.1 109.6 -22.3% 220.0 201.0 -8.6% 

M3D shows more benefit in feed-forward classification workloads 
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Feed-Forward Classification  

vs. Pseudo-Training (cont’d) 

• Pseudo-training  

– Feed-forward classification + weight 

write phases 

– Involves more memory operations 

– More power consumption on 

sequential logics, which cannot be 

reduced effectively with M3D 

 

M3D shows bigger impact on the compute-intensive workloads 
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Conclusion 

• M3D effectively reduces the total power consumption of deep 

neural network hardware by reducing wirelength and standard 

cell area 

• DNN with large amount of memory requires memory block 

partitioning to maximize total power saving 

• M3D shows larger power savings with smaller CGS block sizes 

mainly since it consist of more combinational logics 

• Compute-intensive classification workload offers more power 

saving than memory-intensive training workload. This may not be 

true for other DNN architectures, but analysis method used in this 

paper is useful to study practical ASIC implementation of DNN 


