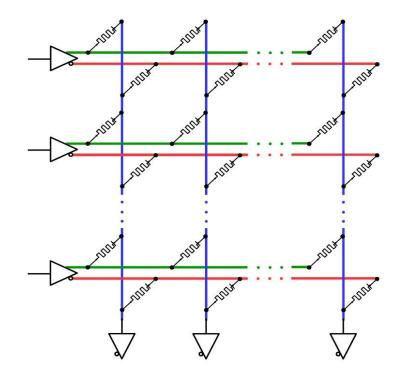
Evaluating Online Learning in Memristive Neuromorphic Circuits

<u>Austin Wyer</u>¹, Md Musabbir Adnan¹, Bon Woong Ku², Sung Kyu Lim², Catherine D. Schuman³, Raphael C. Pooser³, and Garrett S. Rose¹

¹Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville

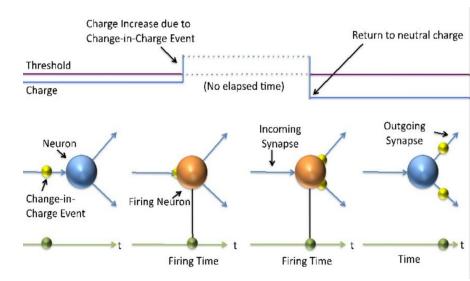
²School of Electrical and Computer Engineering Georgia Institute of Technology

³Oak Ridge National Laboratory

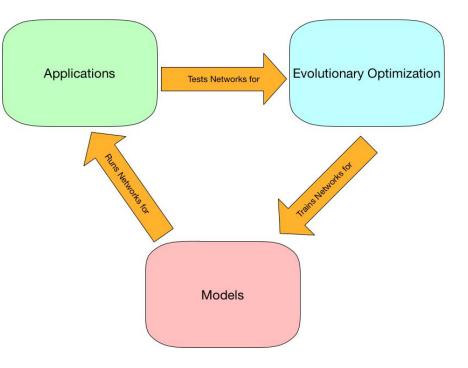

Overview

- Architecture
- NIDA
- Memristors
- Online-Learning
- STDP
- Verification
- Experiments and Results

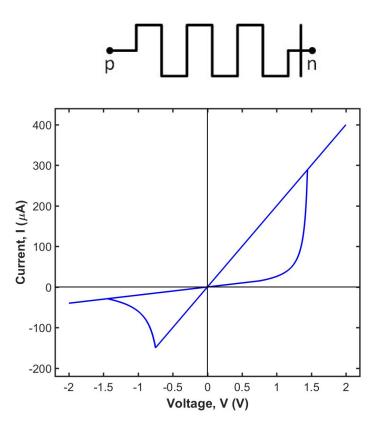
Our Neuromorphic Architecture

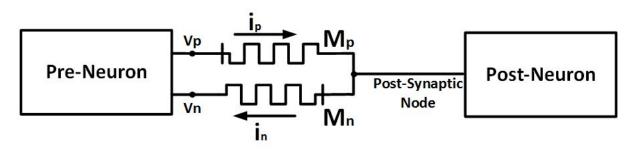

- Reconfigurable Neuromorphic Fabric
- Programmable Neuromorphic Cores
- Act as a Coprocessor
- Scalable
- Simulators for Different Granularity

NIDA Model


- Spiking Architecture with Neurons and Synapses
- Embedded in 3-Dimensional Space
- Synaptic Delays Depend on Distance
- Optimization in Delay Space
- Proven Model

Training with NIDA


- Established Tools
- No Fixed Network Topology
- Networks Typically Recurrent
- Well-suited for Spatio-Temporal Applications
- Optimize to the Application
- Effective Comparison of Models


Memristors as Synapses

- Non-volatile Memory Resistor
- Memristance Depends on Previous Voltages
- Memristance Acts as Synaptic Weight
- Programmable Weights
- Area and Energy Efficient

Twin Memristor

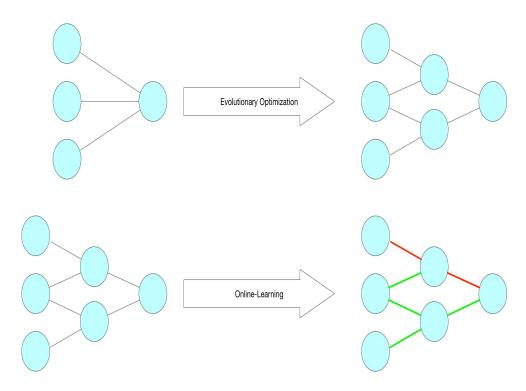
- Two Memristors for Each Synapse
- Allows Positive and Negative Weights
- Synapse Converts Spikes into Current
- Currents are Summed in the Post-Synaptic Neuron

Building on the NIDA Model

NIDA

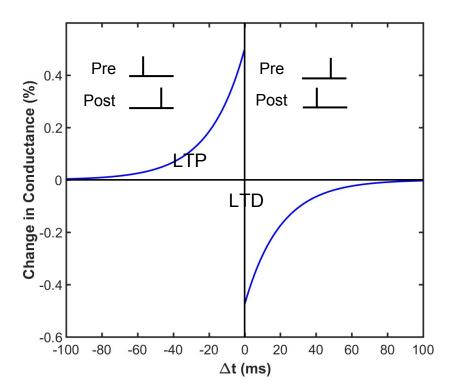
- Asynchronous Events
- Continuous Delays
- Arbitrary Synaptic Weights
- No Restriction on

Connections

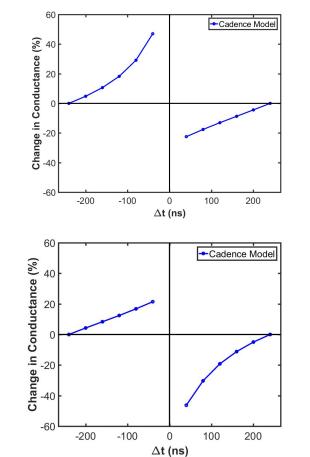

Memristive NIDA

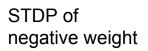
- Synchronous Clock
- Discrete Delays
- Low Granularity Synaptic
 Weight Initialization
- Connection Limited to Adjacent Cores

Online Learning


- Motivation:
 - Limited Programming Resolution
 - Improves Generalization
 - Process Variation
- Unsupervised
- Potentiation/Depression

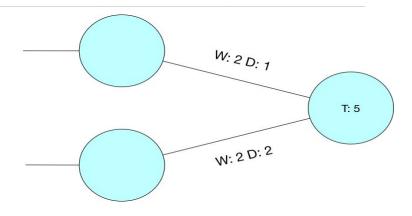
Spike-Timing-Dependent Plasticity

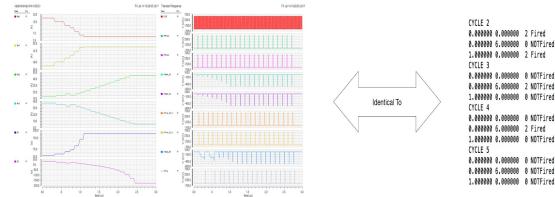

- Biologically Inspired
- Potentiation and Depression of Synaptic Weights
- Change in Weight Relation to Δt
- Synapses Closest to Fire Events Updated Most



STDP in Memristive Model

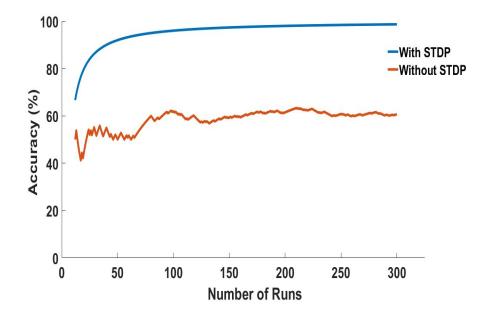
- Programmable Cycle Window
- Discretized
- Express Δt in Cycles
- Approximately Exponential
- Enabled During Training
- Avoid Divergence




STDP of positive weight

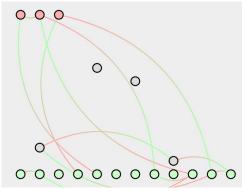
Verifying the Model

- Simulations at Circuit and Network Level
- Simple Network for Testing
- Compare Neuron Fires and Synaptic Weights
- Fires Match on Cycle



STDP for XOR

- Network Accuracy Only 60%
 Without STDP
- Limited Programming Resolution
- Enables More Synaptic Weights
- Online-Learning Reinforces Behavior



Classification

- 3 Datasets
 - Iris
 - Pima Indians Diabetes
 - Wisconsin Breast Cancer
- Train with STDP On and Off
- Accuracy Measured on Test Set
- Generalization

Generalization

Different Resolutions

Conclusions

- There is a need for simulators at the circuit level as well as at the application level
- A synchronous memristive NIDA is a viable neuromorphic architecture
- Online-Learning provides a small increase in generalization for classification applications in our model
- Online-Learning can provide increased granularity in synaptic weights for memristive neuromorphic systems

Future Work

- Test the impact of online-learning on more difficult applications
- Measure the impact of the choice of memristor on online-learning at the application level
- Understand how process and cycle to cycle variation affect online-learning
- Investigate structural differences, if any, in networks with and without learning
- Compare the design trade-offs of different STDP cycle windows at a circuit and application level

Acknowledgments

Questions?

