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Outline

* Historical Perspective
* Motivations of Neuromorphic Computing

» Key Questions:
— Models
— Algorithms
— Hardware and devices
— Applications

 What’s Next?

%OAK RIDGE

1 Labor



Historical Perspective

“The Analytical Engine has
no pretensions whatever to
originate any thing. It can do
whatever we know how to
order it to perform. It can
follow analysis; but it has no
power of anticipating any
analytical relations or truths.”
-- Ada Lovelace, in her notes
on Charles Babbage's
Analytical Engine article

Source: http://www.cs.yale.edu/homes/tap/Files/ada-lovelace-notes.html
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Historical Perspective

“Instead of trying to produce
a programme to simulate
the adult mind, why not
rather try to produce one
which simulates the
child's?”

— Alan Turing, In
“Computing Machinery and
Intelligence”

Image Source: https://www.biography.com/people/alan-turing-9512017
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Historical Perspective

"l will discuss the points of similarity
between these two kinds of
‘automata’...There are elements of
dissimilarity...not only in rather
obvious respects of size and speed
but also in much deeper-lying areas:
These involve principles of
functioning and control, of over-all
organization, etc.”

— John von Neumann, in The
Computer and the Brain
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Neuromorphic Computing Definition Over Time

Computation
distributed .
across simple Ar;:hltehcture
Analog electronic Analog Circuits Custom Analog, elements ﬁ:ﬁ i(t)r ter?ovrvrig
circuits for brain-like and Digital, or Hybrid SUGCEICIEIRTILY periorm
: Sensory Circuits communication  computation is
computation Systems between inspired by
elements biological brains
(through
synapses)

Carver Mead. “NeuromorphiI electronic system}."

Proceedings of the IEELEZW MilP98%01629-1636
Work by Mead, ,

Indiveri, Boahen, Early 2000’s
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Carver Mead and Neuromorphic

“The nervous system uses, as its basic operation, a current that increases
exponentially with voltage... What class of computations can be implemented
efficiently using exponential functions as primitives? Analog electronic
circuits are an ideal way to explore this question.

The fact that we can build devices that implement the same basic operations as
those the nervous system uses leads to the inevitable conclusion that we
should be able to build entire systems based on the organizing principles used
by the nervous system. | will refer to these systems generically as
neuromorphic systems.”

— Carver Mead, in "Neuromorphic Electronic Systems,”
Proceedings of the IEEE, October 1990.
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Neuromorphic Computing Today

* "Neuromorphic" computing distributes both computation and memory among an
enormous number of relatively primitive "neurons,” each communicating with
hundreds or thousands of other neurons through "synapses." - Don Monroe,
“Neuromorphic Computing Gets Ready for the (Really) Big Time”, CACM, June,
2014.

 “Although in the original definition, the term neuromorphic was restricted to the
set of analog VLSI circuits that operate using the same physics of computation
used by the nervous system (e.g., silicon neuron circuits that exploit the physics
of the silicon medium to directly reproduce the bio-physics of nervous cells), the
definition has now been broadened to include analog/digital hardware
implementations of neural processing systems, as well as spike-based
sensory processing systems.” — Indiveri, et al., “Neuromorphic silicon neuron
circuits,” Frontiers in Neuroscience, May 2011.

%OAK RIDGE

1 Labor



Neuromorphic Computing Today

A neuromorphic computer is a computer whose
underlying architecture and the way that it performs
computation is inspired by biological brains.

350 Neuromorphic and Neural Network Hardware Papers Over Time
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Why neuromorphic
computing?



Why Neuromorphic Computing?

« Carver Mead'’s reasons for analog neuromorphic systems:

— Power efficiency and size: “Perhaps the most intriguing result of
these experiments has been the suggestion that adaptive analog
systems are 100 times more efficient in their use of silicon, and
they use 10,000 times less power than comparable digital
systems.”

— Robustness: “lt is also clear that these systems are more robust

to component degradation and failure than are more conventional
systems.”

— Beyond silicon: “| have also argued that the basic two-
dimensional limitation of silicon technology is not a serious
limitation in exploiting the potential of neuromorphic systems.”

Source: Mead, Carver. "Neuromorphic electronic systems." Proceedings of the IEEE78.10 (1990): 1629-1636. %OAK RIDGE
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Motivations for Neuromorphic and ANNs in Hardware




Motivations: 1988-1997
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Motivations: 1998-2002
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Motivations: 2003-2007
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Motivations: 2008-2012
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Motivations: 2013-2016
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Overall View: 1988-2016
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Key Questions in Neuromorphic Computing

* Models

* Training and Learning

- Hardware, Devices, and Materials
* Applications

¥ OAK RIDGE
National Laboratory



What model should be
implemented?
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Neuron Models
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Neuron Model Families
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Neuron Models

Other Biologically-Inspired Biologically-Plausible  Integrate-and-Fire

McCulloch-Pitts Neuron+Other Model IAK RIDGE
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Network Model Families
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Network Models

* A wide variety of network
models have been
Implemented in
hardware or
neuromorphic systems.

» Spiking neuromorphic
systems have been used
to implement a variety of
other types of network
models.

it



Network Models

Network Models Over Time
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General Model Concerns and Open Questions

« Many spiking implementations are translations of other types of
neural networks onto spiking networks.

— Pro: Leverage previous research
— Con: Inhibits development on spiking neural networks themselves

* How restricted should the neuromorphic system be?
— Topology — Fixed or programmable?
— Neuron/synapse model — Capabilities that can be tuned or turned on and off?

« Can we leverage neuromorphic systems to accelerate network model
study?

— E.g., as GPUs did for convolutional neural networks and deep learning

%OAK RIDGE

1 Labor



What training/learning
method should be used?



Choosing an Appropriate Training/Learning Algorithm

* Programming is primarily used for |
systems that are neuroscience- Programming:
driven Manual

_ programming
— Setting parameters based on those
observed in biological brains.

* Training algorithms are the most
well-understood and have had

significant demonstrated success. Training: Learning:
| | Supervised Unsupervised
 Learning algorithms are the “holy learning learning
grail.”
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Training/Learning Supervised Unsupervised
* Training and learning

algorithms here are those

that have been developed

specifically for

neuromorphic systems,

and one of the following is

true:

S

— Customized in some way to
deal with restrictions

— Implemented on-chip
— Chip-in-the-loop

32 Neuromorphic Computing



Training/Learning Mechanisms

Algorithm Any Device Complexto On-Line Fast Demonstrated Biologically-
Model Quirks Implement Time to Broad Inspired
Solution Applicability or Plausible

Back- No Maybe Yes No Yes Yes Maybe
Propagation

Evolutionary | Yes Yes No No No Yes Maybe
Hebbian No Yes No Yes Maybe No Yes
STDP No Yes Maybe Yes Maybe No Yes

%QAK RIDGE

ational Laboratory



Training/Learning — Concerns and Open Questions

« STDP is frequently implemented, but its capabilities are not
frequently explored.

— Though it's been shown to be useful in several cases, the specific
implementation of STDP and the context of the greater model can have a
significant effect on performance.

* |t's not enough to train off-line and off-chip.

— Training/learning is clearly an important component of neuromorphic systems
use.

— We must consider how the neuromorphic systems themselves can be used
during part or all of the training process.

%OAK RIDGE

1 Labor



What hardware/devices/materials
should be used to implement
neuromorphic systems?



Hardware Implementations

Analog Circuitry/
Digital Commumcatlon

Analog Circuitry/

Digital Memory\
* Different hardware classification criteria: e circuity ‘

— Digital/Analog/Mixed/Other

— Programmable Architectures vs. Custom Chips
— Degree of parallelism

— “General purpose” vs. application specific

— On-chip or off-chip learning

— Input types \

— Communication networks FPAA/FPNA

Digital

Custom

N. Izeboudjen, C. Larbes, and A. Farah, “A new classification approach for neural networks
hardware: from standards chips to embedded systems on chip,” Artificial Intelligence Review,
vol. 41, no. 4, pp. 491-534, 2014.
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Major Neuromorphic Projects

Sp|NNaker BrainScaleS:
« Hybrid
analog/digital
« Wafer-scale
» Super-threshold

Fully digital
 Many small
integer cores

 Custom .
interconnect operaﬁon |
« Flexible model - Relatively high
clock rate

and topology

TrueNorth:

U Hybrid
: (F:ullxt/ dlgRaS!IC analog/digital
ustom * Sub-threshold
* Fixed model (LIF) operation
* Highly optimized - Relatively low
clock rate

SpiNNaker Image: http://wp.doc.ic.ac.uk/hipeds/wp-content/uploads/sites/78/2016/01/The-SpiNNaker-Project-Seminar-Slides.pdf
IBM TrueNorth: http://www.techrepublic.com/article/ibms-brain-inspired-chip-truenorth-changes-how-computers-think-but-experts-question-its-purpose/

BrainScaleS: http://www.artificialbrains.com/brainscales %OAK RIDGE

Neurogrid: http://news.stanford.edu/pr/2014/pr-neurogrid-boahen-engineering-042814.html X
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Emerging Components
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Materials

* Materials:
— A variety of metal-oxides
- HfO,, TiO,, WO,, TaO,, etc.
— Carbon nanotubes
— Graphene
— Ferroelectric materials

— Polymer and organic-based memristors
and transistors

Graphene

Carbon nanotube: https://www.digitaltrends.com/computing/ibm-carbon-nanotubes-moores-law/
Graphene: https://www.extremetech.com/extreme/211437-extremetech-explains-what-is-graphene %OAK RIDGE
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Materials

* Circuit components fabricated with different materials can have

different behaviors:
— Number and type of resistance states

— Endurance

— Stability

— Reliability

— Switching speeds
— Cost

— Tunability

Table: Mohammad, Baker, et al.
"State of the art of metal oxide
memristor devices." Nanotechnology
Reviews 5.3 (2016): 311-329.

Table 1: Examples of bipolar metal oxide memristors and their operational characteristics.

Material TE/BE Voer/Veeser AR=R_ /R, Switching Retention time Endurance Fabrication process References
speed
Zn0 Ag/Cu 1.2V/-1.25V 1000 - - >500 cycles Electrohydrodynamic printing [110]
Pt/Pt 1V/-0.5V 100 10 ms - 10¢ cycles RF-magnetron sputtering [111]
Tio, Pt/Pt - 100 - - - ALD [112]
TiN/Pt +1V/-1.5V 10 1lus 10%s 10% cycles RF-reactive sputtering [97]
TaN-TiN/TiN-TaN 1.5V/-1.5V 1.5 - - 102-10° cycles Sputtering [113]
Al/Al 3V/-2V ~50 - 10%s 100 cycles Plasma-enhanced ALD [114]
LaO ITO/SrTiO, 5V/-1.6V 200 - >4x10%s 2000 cycles Pulsed laser deposition [115]
TaO, Pt/Pt - - 10 years at 85°C 10° cycles Sputtering [116]
W/Pt - - - >10years 10* cycles RF-magnetron sputtering [117]
NiO Pt/Pt >10V/<-10V - - >10%s - Pulsed laser deposition [118]
Au/Au +5.2V/-6V - - - - Electrochemical plating [96]
HfO, TiN/TiN 1.5V/-1.4V 100 <10 ns >500 min at 200°C >10¢ cycles ALD [93]
TiN/TiN - >50 5ns 105s at200°C 5x107 cycles ALD [61]
Zr0, ITO/Ag 1V/-1V >10 - 10¢sat27°C >50 cycles Electrohydrodynamic printing [119]
Ag/Ag 3V/-3V ~100 - - - Electrohydrodynamic printing [120]
TiN/Pt 0.8V/-0.5V - - 10*s at27°C 10° cycles RF-magnetron sputtering [121]
CeO, Au/Au 2.4V/-3V 10* - - - Sol-gel (drop-coating) [122]
AlO, Alor CNT/CNT - - - 105s 10% cycles ALD [123]
Cu/W 1.3V/-0.05V 500 - 10%s - E-beam evaporation [124]
ALO, Ti/Pt 1.4V/-1.7V <1000 10ns 10%s - RF-magnetron sputtering [59]
Cu,0/Cu0 Pt//Nb-STO - 10° - - - Plasma assisted molecular beam epitaxy [125]
Gd,0, ITO/ITO +2V/-2V - - - 103 cycles Pulsed laser deposition [126]
GdO, Cr/TiN <+4V/[-4V >70 - 3x10%s 10% cycles E-beam evaporation [127]
MnO Ti/Pt 0.7V/-1.1V - - 10*s at 85°C 10% cycles RF-reactive sputtering [128]

TE, top electrode; BE, bottom electrode; “~”, data not found in the associated reference paper.



Hardware/Devices/Materials Open Questions and Concerns

 High-level chip design questions: programmability, general vs.
application-specific, digital/analog/hybrid, etc.

* What are the most appropriate emerging components to use to build
neuromorphic systems?

« Can we customize materials/selection of materials specifically for
neuromorphic use?

* Most literature in the materials science and low-level circuits does not
tie to real usage:

— Co-design will be extremely important moving forward!

%OAK RIDGE
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What are the appropriate applications
for neuromorphic computers?



Applications of Neuromorphic Computing

Spatio-
Temporal

» Co-processor

Continuous
Learning

 Large-scale data analytics
* Cyber security

Requires Neuromorphic Real-Time

robustness C,ﬁ,‘:‘;ﬂfg’,}ig"t’i‘cs | Processing ¢ Autonomous Veh|C|eS
| | - Robotics
* Internet of things

Not high
precision

« Smart sensors

OAK RIDGE
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What’s Been Done?

* Tremendous focus on image
classification and processing.

» Opportunity for big impacts in:

— Implantables/wearables
— Internet of things

— Smart sensors

— Robotics

— Control

— Anomaly Detection

44 Neuromorphic Computing
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Example Application: Robotics

SpiNNaker on a robot: http://www.neuromorphs.net/nm/wiki/2013/uns13

Qualcomm: https://www.technologyreview.com/s/520211/qualcomm-to-build-neuro-inspired-chips/ %NO AKIBEDGE
ational Laboratory



Summary

* There has been a significant amount of work in building
neuromorphic systems and neural network hardware over the last
few decades.

— Wide variety of models, algorithms, hardware/devices, and applications have
been explored.

- However, we have barely scratched the surface of what is possible to
do within the field of neuromorphic computing.

— Significant work to do in algorithm development, custom and emerging
hardware and materials for hardware, and applications.

%OAK RIDGE
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What’s Next?

* Model and algorithms research:

— Wider availability of spiking neuromorphic systems - More research on
spiking neural networks and their capabillities and learning algorithms

— Wider adoption of neuromorphic systems - Increased need for supporting
software

 Hardware/devices:

— Advances in materials fabrication and characterization - Advanced co-design
of neuromorphic systems and materials

 Applications:

— Explosion of use-cases for low power, small footprint smart embedded
systems - Opportunity for embedded neuromorphic systems to shine

— Spatiotemporal scientific data explosion - Opportunities for neuromorphic co-
processors or smart in situ analyzers
%OAK RIDGE
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Neuromorphic Computing Survey Paper

“A Survey of Neuromorphic Computing and Neural
Networks in Hardware”
https://arxiv.org/abs/1705.06963
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Thank You!

Email: schumancd@ornl.gov
Website: CatherineSchuman.com



