

Hewlett Packard Enterprise

Inspired by the Brain: Computing from Architecture to Devices

R. Stanley Williams HPE Senior Fellow

> Neuromorphic Computing Symposium July 18, 2017

EEE Computer society

What's Next?

The end of Moore's law could be the best thing that has happened in computing since the beginning of Moore's law. **The Chua Lectures: A 12-Part Series at HPE Labs** From Memristors and Cellular Nonlinear Networks to the Edge of Chaos <u>https://www.youtube.com/playlist?list=PLtS6YX0YOX4eAQ6IrOZSta3xjRXzpcXyi</u> or enter "The Chua Lectures" into your favorite browser

What's missing?

'Linearize then analyze' is not valid for understanding nanodevices or neurons – a new nonlinear dynamical theory of 'electronic' circuits is needed, and was developed 50 years ago by Leon Chua, father of nonlinear circuit theory and Cellular NNs.

Structure of a US Neuromorphic Science Computing Program

- 1. Connect Theory of Computation with Neuroscience and Nonlinear Dynamics e.g. Boolean logic, CNN, Baysian Inference, Energy-Based Models, Markov Chain
- 2. Architecture of the Brain and Relation to Computing and Learning Theories of Mind: Albus, Eliasmith, Grossberg, Mead, many others
- 3. Simulation of Computational Models and Systems need supercomputers!
- 4. System Software, Algorithms & Apps Make it Programmable/Adaptable
- Chip Design System-on-Chip: Accelerators, Learning and Controllers Compatible with standard processors, memory and network fabric (Gen-Z)
- Chip Processing and Integration Full Service Back End of Line on CMOS DoE Nanoscale Science Research Centers (NSRCs) – e.g. CINT
- Devices and Materials *in situ* and *in operando* test and measurement
 Most likely materials will be adopted from Non-Volatile Memory

Hewlett Packard

Future exponential increases in computer performance and efficiency will require multiple advances: Systems and

- Memory-centric computing no von Neumann bottleneck
- Gen-Z high performance open fabric to democratize computing (<u>http://genzconsortium.org/</u>)
- Dot-product engine: memristor-based vector-matrix multiplication accelerator for neural nets and signal processing
- Mimicking Synapse and Neuron Dynamics with Memristors
- Chaos as a computing resource for constrained optimization problem solving (Hopfield network)

Architectures

From processor-centric computing...

the traditional von Neumann architecture

Enterprise

...to Memory-Driven Computing

with Gen-Z open (nonproprietary) fabric, computing is plug and play

Memory-Driven Computing (MDC) is a reality: The Machine

Fast, persistent	Fast memory fabric	Task-specific	New and Adapted
memory		processing	software
Combining memory and	Using photonics where	Optimizing processing from general to specific tasks	Radically simplifying
storage in a stable	necessary to eliminate		programming and enabling
environment to increase	distance and create		new applications that we
processing speed and	otherwise impossible		can't even begin to build
improve energy efficiency	topologies		today
	Gen-Z fabric: ultra	a-high	to 8000x speed-up
	bandwidth open I	bus to	for Monte Carlo
	democratize com	puting	simulations
Memristor technology,		Developing new	
ongoing transfer from lab to		accelerators from novel	
commercial product		device behavior	
Hewlett Packard Enterprise			7

http://genzconsortium.org/en-Z

High Bandwidth Low Latency	 Memory Semantics – simple Reads and Writes From tens to several hundred GB/s of bandwidth Sub-100 ns load-to-use memory latency
Advanced Workloads & Technologies	 Real time analytics Enables data centric and hybrid computing Scalable memory pools for in memory applications Abstracts media interface from SoC to unlock new media innovation
Secure Compatible Economical	 Provides end-to-end secure connectivity from node level to rack scale Supports unmodified OS for SW compatibility Graduated implementation from simple, low cost to highly capable and robust Leverages high-volume IEEE physical lavers and broad, deep industry ecosystem

Rack Scale

Hewlett Packard Enterprise Founding Members of the Gen-Z Consortium (38 today)

Hewlett Packard

Brain Inspired Accelerators: devices \rightarrow circuits \rightarrow applications

<u>Materials engineering – device properties</u>

- High resistance
- Large OFF/ON ratio
- Low switching current
- Linear electronic transport

Cell integration, arrays, and circuits

- Integration/fab of memristors with selectors/transistors
- Optimizing reading and writing circuits
- Construct platform to write/read device arrays
- Compact modeling of memristor characteristics

Architectures, Algorithms, Applications

- Matching capability to favorable applications
- Benchmarking and optimizing performance; GOPS/Watts
- Quantifying sources of error and bottlenecks

Application-aware research into materials/cell/circuit

Dot Product Engine: memristor arrays accelerate vector-matrix multiplication (C. elegans – 800 papers/yr)

- **Parallel multiply & add through Kirchoff's and Ohm's laws** 1961, K. Steinbuch "*Die Lernmatrix*" – suggests using "ferromagnetic toroids"
- Memristors as highly scalable, tunable analog resistors
 High ON/OFF ratio (~10⁵), supporting multiple levels
- Well suited for streaming workloads like neural nets
- Many ways to scale up

Memristor levels, array size, wire pitch, 3D layer, DAC/ADC speed & width etc.

 Performance (execution time) improvements >1000x and energy efficiency >100x over GPUs for <u>particular applications</u>

The DPE: memristor-based analog computing platform

Flexible system for programming and computing on arrays of integrated Transistor-Memristors (1T1M)

Hewlett Packard Enterprise

Programming memristor arrays for computation

64x128 array = 8192 memristors

Each "pixel" is a continuously tunable memristor cell Grayscale - 182 distinct conductance levels (~7-8 bits) Each memristor can be reprogrammed >1e6 times

Single Layer NN for MNIST classification

Miao Hu, et al. *in preparation*

Enterprise

Dealing with "defects" - retraining

Retrain the network - surrounding weights can compensate for bad devices

C Liu, M Hu, JP Strachan, H Li, DAC 2017

"ISAAC" - architecture acceleration using DPEs

Store and re-use Kernels in non-volatile memristors – reduce data fetching

Heavy pipelining

Speedup of >5,000x over GPUs and 800x less energy

Speedup of 15x over Digital ASIC and 5.5x less energy

128x128 memristor Xbar arrays, 2 bits per cell, operating at 10 MHz

A. Shafiee, et al., "ISAAC: A Convolutional Neural Network Accelerator with In-Situ Analog Arithmetic in Crossbars", International Symposium on Computer Architecture (ISCA) 2016.

Signal processing on a DPE system (UMass collaboration) – instantaneous cosine transform

Time-domain inputs (applied to rows)

Freq-domain (DCT) outputs (read from columns)

C. Li, et al., *submitted* Umass Amherst

Image Compression with cosine transform on the DPE

Experimental crossbar encoder

C. Li, et al., submitted **UMass Amherst**

а

Convolutional Filters with the DPE

C. Li, et al., *submitted* Umass Amherst

Writing software for a memristor accelerator

- Initial development of OS/Compiler/HW emulator
- Co-designed with hardware efforts
- Generalize/Broaden to other matrix-heavy applications (medical imaging, sci computing, network management)

Ag in Metal Oxide Diffusive Memristor – Emulating Dynamics

²¹ Z Wang, S Joshi, SE Savel'ev et al., Nature Materials 16 (1), 101-108 UMass Amherst

Ag Diffusive Memristor Mimics Ca²⁺ Ion Dynamics in Synaptic Gap

²² Z Wang, S Joshi, SE Savel'ev et al., Nature Materials 16 (1), 101–108 UMass Amherst

Hewlett Packard Enterprise 22

Diffusive Decay Provides an Extended Window for STDP

Z Wang, S Joshi, SE Savel'ev et al., Nature Materials 16 (1), 101-108 UMass Amherst

Hewlett Packard Enterprise

23

Modified Hopfield network for optimization problems

Turing believed that intelligence required randomness and would necessarily lead to mistakes

Chua has shown that neurons are 'poised on the edge of chaos', and that chaos leads to complexity and emergent behavior

Epilepsy occurs when the neurons in the brain synchronize, i.e. lack of chaos

Chaos as a computing resource May allow construction of a highly scalable "annealing" machine Benchmarking to compare to other Classical and Quantum Annealing machines

Thermoreflectance Imaging of NbO₂ current control behavior

Niobium oxide memristor: behavior and model

NbO₂ memristor: computing with chaos

in situ and *in operando* scanning transmission x-ray microscopy (STXM) at ALS critical for analysis of memristor operation

Dynamical Behavior:

 $\begin{aligned} \textbf{Lyapunov exponent} \\ \lambda = \lim_{t \to \infty} \lim_{\delta \mathbf{Z}_0 \to 0} \frac{1}{t} \ln \frac{|\delta \mathbf{Z}(t)|}{|\delta \mathbf{Z}_0|} \end{aligned}$

Frequency analysis

Able to describe by incorporating thermal fluctuations

$$\eta(T) = T\left(\frac{k_{B}}{C_{th}}\right)^{\frac{1}{2}} \frac{4\pi}{R_{th}C_{th}} rand(-1 \leftrightarrow 1)$$

Negative Differential Resistance in the system leads to positive feedback in presence of fluctuations

Thermal capacitance C_{th} shrinks with device size

 \rightarrow increasing importance of thermal fluctuations

Simulations dT_{static}/dt dT/dt (K/ps) ∆T| (K) 800 400 1200 T_{ave} (K) Without Thermal Flucts With Thermal Flucts. 0.1 (mA) 0.5 0.0 0.0 5 Time (μs) 5 Time (μs) 10 10 0 0

Modified Hopfield network for optimization problems

Traveling Salesman problem

NP hard: O(*n*³2^{*n*})

S Kumar, et al. Nature, in press – on line Aug. 9

Encode any TSP instance in the DPE weight matrix

Defines an "energy" of the system to be minimized

$$\mathbf{E} = -\frac{1}{2} \sum_{i} \sum_{j} s_{i,j} \sum_{k} \sum_{l} s_{k,l} w_{(i,j),(k,l)} + \sum_{i} \sum_{j} s_{i,j} \boldsymbol{\theta}$$

Follow update rule:
$$s_{i,j} = \begin{cases} 1 \text{ if } Ws'_{i,j} > \theta \\ -1 \text{ if } Ws'_{i,j} < \theta \end{cases}$$

Modified Hopfield network for optimization problems

Traveling Salesman problem

O(n2^{*n*})?

still NP hard

٥

S Kumar, et al. Nature, in press

Acknowledgments

John Paul Strachan Miao Hu Suhas Kumar **Catherine Graves** Emmanuelle Merced Dejan Milojicic Ali Shafiee Naveen Muralimanohar Gary Gibson Max Zhang

J. Joshua Yang Qiangfei Xia Can Li Yunning Li Saumil Joshi Zhongrui Wang Izzat El Hajj (Univ Illinois Urbana-Champagne) Pedro Bruel (IME, Universidade de São Paulo) Sergey Saveliev (Loughborough U, UK)

Funding assistance

