Memristive Nanowire Neural Networks

Jack D. Kendall
Founder, CTO
Rain Neuromorphics

Juan C. Nino
Professor, Materials Science
University of Florida
Why Neuromorphic Hardware?

- Enable cheap, scalable AI
- Give us valuable insights into how biological brains operate
So What’s Stopping Us?
The human brain has about 10^{11} neurons. If these would all be mutually interconnected, this would result in 10^{22} synapses, an unimaginable number for which there is simply no physical space.

Francky Catthoor - imec
How does the brain do it?

◇ Dense, random local connectivity

◇ Gradually more sparse long-distance connections

Current Methods

- Most current designs based on crossbar arrays
- Fully connected lattices scale quadratically in number of neurons

Memristive Nanowire Neural Networks (MN3)

Memristive Nanowire Neural Networks (MN3)

Connectivity

Random

Distance Dependent

Modular

Variable Degree
We can use the network as the reservoir in an echo state network.

Simulated memristive reservoir can perform classification of spoken digits.

http://www.simbrain.net/Documentation/docs/Pages/Network/network/echostatenetwork.html
Feedforward Operation

\[I_j = \sum_{i=1}^{N} G_{ij} (V_i - V_j) = 0 \]

\[V_j = \frac{\sum_{i=1}^{N} G_{ij} V_i}{\sum_{i=1}^{N} G_{ij}} = \frac{\sum_{i=1}^{N} G_{ij} V_i}{G_j} \]

\[I_k = \sum_{j=1}^{M} G_{kj} V_j \]
Backpropagation

\[\Delta G_{kj} = \alpha (T_k - I_k)V_j \]

\[\Delta G_{ji} = \alpha \left(\sum_k G_{kj} (T_k - I_k) \right) V_i \]

Apply a series of threshold voltages to update the weights.
Backpropagation

- Simulated a memristive nanowire network with metastable switch (MSS) memristors
- With our algorithm, we can achieve 90% accuracy on MNIST
Hardware Prototype
Future Work

- Implementation of backpropagation algorithm in hardware
- Classification of spoken and handwritten digits
- Nanoscale prototype with 100,000 neurons
Conclusion

- Fully scalable alternative to crossbar array
- Supports complex topologies such as small world and scale-free networks
- High neuron and synapse densities
- Trainable using backpropagation
Thank You!

Jack D. Kendall
Founder, CTO
Rain Neuromorphics
jack@rain-neuromorphics.com

Juan C. Nino
Professor, Materials Science
University of Florida
jnino@mse.ufl.edu