Memristive Nanowire Neural Networks

Jack D. Kendall Founder, CTO Rain Neuromorphics Juan C. Nino Professor, Materials Science University of Florida

Why Neuromorphic Hardware?

Enable cheap, scalable AI
 Give us valuable insights into how biological brains operate

So What's Stopping Us?

¥

The human brain has about 10^{11} neurons. If these would all be mutually interconnected, this would result in 10^{22} synapses, an unimaginable number for which there is simply no physical space.

Francky Catthoor - imec

How does the brain do it?

Obense, random local connectivity

Gradually more sparse long-distance connections

C.J. Stam, Nature Reviews Neuroscience (2015).

Current Methods

 Most current designs based on crossbar arrays
 Fully connected lattices scale quadratically in number of neurons

R.S. Williams, IEEE Spectrum (2008).

Memristive Nanowire Neural Networks (MN³)

Memristive Nanowire Neural Networks (MN³)

J.C. Nino and J.D. Kendall - PCT/US2015/034414, (2015).

Random

Connectivity

Distance Dependent

Variable Degree

Modular

Reservoir Computing

- We can use the network as the reservoir in an echo state network.
- Simulated memristive reservoir can perform classification of spoken digits.

http://www.simbrain.net/Documentation/docs/Pages/Network/ network/echostatenetwork.html

Feedforward Operation

$$I_j = \sum_{i=1}^{N} G_{ij} (V_i - V_j) = 0$$

$$V_{j} = \frac{\sum_{i=1}^{N} G_{ij} V_{i}}{\sum_{i=1}^{N} G_{ij}} = \frac{\sum_{i=1}^{N} G_{ij} V_{i}}{G_{j}}$$

$$I_k = \sum_{j=1}^M G_{kj} V_j$$

Backpropagation

$$\Delta G_{kj} = \alpha (T_k - I_k) V_j$$
$$\Delta G_{ji} = \alpha \left(\sum_k G_{kj} (T_k - I_k) \right) V_i$$

Apply a series of threshold voltages to update the weights

Backpropagation

- Simulated a memristive nanowire network with metastable switch (MSS) memristors
- With our algorithm, we can achieve 90% accuracy on MNIST

Hardware Prototype

Future Work

Implementation of backpropagation algorithm in hardware

- \bigcirc Classification of spoken and handwritten digits
- \bigcirc Nanoscale prototype with 100,000 neurons

Conclusion

 \bigcirc Fully scalable alternative to crossbar array

- Supports complex topologies such as small world and scale-free networks
- High neuron and synapse densities
 Trainable using backpropagation

Thank You!

Jack D. Kendall

Founder, CTO Rain Neuromorphics jack@rain-neuromorphics.com

Juan C. Nino

Professor, Materials Science University of Florida jnino@mse.ufl.edu

