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Neural inspired computing lacks theoretical T2
foundation to translate between fields
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Neural inspired computing lacks theoretical ) e
foundation to translate between fields
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What is the brain as inspiration?




Established conventional wisdom: Tl
neural-inspired computing is bad at math

Why?
« Itis a challenge to separate ARMDS  New CiC++ comgie
brains (cognitive capability) from
neurons (low-energy mechanism)

Intensive efforts to re-create human cognition will

transform the way we work, learn, and play

« Belief that neurons are noisy

* Moore’s Law — It has always been :‘.fsm' Macro to Micro: A Visual Guide |
easier to wait for faster processors than (RSP
to re-invent numerical computing on Why We Should Copy the Brain

Trying 1o create consciousness way be the path to
umh-rvﬂ.v.xu.lmg this most d«ph miysterious humsan
attribute Y

specialized parallel architecture

1 Inthe Future, Machines Will Borrow Our

| Brain's Best Tricks
;‘ A researcher imagines lxm tru mf cial intelligence
will change the world & 1 Rothganger

The Brain as Computer: Bad at
Math, Good at Everything Else

Modeling computers after the brain could
revolutionize robotics and big data

The Brain as Computer: Bad at Math,

Good at Everything Else
Modeling compusters x ﬂ er lhr bramn tould revolutionize
robotics and big data Lelet




Theoretical models of the brain do not need to ;) s,
capture everything

\/ = Implicit in model
X = Not implicit in model
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Spiking neurons are a more powerful version of
classic logic gates

Sandia
)

Spiking threshold gates provide high
degree of parallelism at very low power

Based on a simple McCullogh-Pitts model:

Compute more

| % = powerful logic functions
T AND AB X
— High fan-in [FF

Outputs a 1if and only if: w, + EM wx, =0,

Spikin /[/,/ /JL,, Y,

Pre-synaptic
Neurens

Incorporate time
into logic

Input spikes
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Post-synaptic
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Are threshold gates and spiking neurons

equivalent?

)
bows " Cutput
w?
E

Outputs a 1if and only if: W, + EM wx, =0,

Not Trivial

Trivial
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HAANA has produced a number of spiking ) 2=,
numerical algorithms

Laboratories

= Cross-correlation T
= Severa et al., ICRC 2016 e
=t % pi(0) zj
= SpikeSort (| o )
= Verzi et al., submitted %1 Rp i
= SpikeMin

= SpikeMax
= SpikeOptimization
= Verzi et al., JCNN 2017

= Sub-cubic (i.e., Strassen) constant depth matrix multiplication
= Parekh et al., submitted




A Velocimetry Application

= A motivating application is the
determination of the local velocity in a
flow field

= The maximal cross-correlation between

two sample images provides a velocity L— .'%; ._°1 ¥ b Far e 3.
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Time Multiplexed Cross Correlation
Integrators
Feature Detectors — * Latency Coding
« Rate Coding e
pr— 'y A

3 ¢ Temporal Coding: O(n) neurons;

Time-coded Inputs

: C O(n) runtime
» Temporal Coding

{ Parallelize inputs and

a corresponding timesteps to
¢ _ achieve 0(n?) neurons; 0(1)
- runtime

‘_

h_—i
— ) Fires regularly; forces
—r iNntegrator to fire

Severa et al., ICRC 2016



Cross-Correlation Exhibits Time/Neuron rh) i
Tradeoff

Inputs Output signal routed to
* One neuron per Argmax
function per ey
dimension . :
©
* Exchange Time Cost < . ‘
Neuron Cost ¢ SN )
. L (
« Complexity is unchanged . P
€ 4 4
'3 i i 3 B ¢
» Neurons: 0(n?) < 0(n) 2 o J
e« Time: 0(1) < 0(n) - Inner products all
computed in
e parallel S

Severa et al., ICRC 2016
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“Neural” network for matrix multiplication

() @) () qee () Nnodes e e ()e 0()e e e () Nnodes

~
Standard: ‘
anaard:
11%811 1:X8;3 13X833 1XBua || A11XBay 14X By N

8MS, 4As — PE N3 nodes
O(N?)

N2 nodes

Strassen:
7Ms, 18A/Ss—
()(pd2+e)

Strassen formulation of matrix multiply enables less than O(N3) neurons

— resulting in less power consumption .
J P P Parekh et al., submitted




i Nottorel

Strassen multiplication in neural hardware may sborores
show powerful advantages
! Depth # Gates Value of £

Standard [ OAN) -

St SR Conventional

Refined d O(Nw*€) 0(1/c9)

Strassen

Non-constant Oflog log N) O(N®) - |
Depth Point at which Strassen

method becomes useful

N

Example: Triangle Counting in Graphs

as#  Input: adjacency matrix of a graph with
- entries eitherOor 1

Strassen-TG

Most of the gates are used
to perform bitwise addition

\] Bitwise multiplication

Output: does the graph have 2 T triangles?
Applications to social network analysis

Parekh et al., submitted



Theoretical models of the brain do not need to 7l
capture everything

\/ = Implicit in model
X = Not implicit in model
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. Sandia
How do we take advantage of neuroscience? M=,
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Primate visual cortex

Felleman and Van Essen, 1991



View of brain as computing system ) S,

e Cortical
- _-==— Processing &
Central Processing Unit l‘:‘ﬁ :T&, Long_ rm Memory
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Cortex — hippocampus interaction can extend ) i
Al to more complete computing system

= Cortex learns to process
sensory information at

Cortical different levels of
) - == Processing & .
, «s—.,ﬁ“:‘:- Long,term Mgmory abstraction

-'---.

4§ /"

= Similar to deep learning, though

Sensory ‘ - Motor o oo
Inputs T Outputs more sophisticated in biology

!
‘ e H| ocampus .
o Shortiem Mgmory = Hippocampus would be a

(—— content addressable memory

= Provide context and retrieval
cues to guide cortical
processing




A robust hippocampus abstraction can bring e
a complete neural system to Al

= Desired functions

= | earn associations between cortical > Entorhinal
modalities ~ Cortex

= Encoding of temporal, contextual, and
spatial information into associations

= Ability for “one-shot” learning
= Cue-based retrieval of information

Dentate
~ Gyrus

4 ‘F

= Desired properties CA3
= Compatible with spiking representations | él
\ 4 'l'

= Network must be stable with adaptation
= Capacity should scale nicely

= Biologically plausible in context of CA1
extensive hippocampus literature » |

= Ability to formally quantify costs and
performance




Formalizing CAM function one

hippocampus layer at a time

_)»» ‘El;;t:fr:n.l;al _

= Constraining EC Dentate
H Gyrus
inputs to have
“grid cell” structure s
sets DG size to l [ I
biological level of v
expansion (~10:1) —

= Mixed code of broad-
tuned (immature) neurons and
narrow tuned (mature) neurons
confirms predicted ability to encode
novel information

William Severa, NICE 2016
Severa et al., Neural Computation, 2017
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Single-value coding. Single-value coding, Mixed Coding
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Brain uses a different approach to processing ) s
In memory

|




Sandia
)

Questions?

Thanks to Sandia’s LDRD HAANA Grand Challenge and the DOE
NNSA Advanced Simulation and Computing program




