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Neural inspired computing lacks theoretical 
foundation to translate between fields
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Neural inspired computing lacks theoretical 
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What is the brain as inspiration?
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Established conventional wisdom: 
neural-inspired computing is bad at math 

Why?

• It is a challenge to separate 

brains (cognitive capability) from 

neurons (low-energy mechanism)

• Belief that neurons are noisy

• Moore’s Law – It has always been 

easier to wait for faster processors than 

to re-invent numerical computing on 

specialized parallel architecture
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Theoretical models of the brain do not need to 
capture everything
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Spiking neurons are a more powerful version of 
classic logic gates 

Spiking threshold gates provide high 

degree of parallelism at very low power

High fan-in

Spiking

Compute more 

powerful logic functions

Incorporate time 

into logic
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Are threshold gates and spiking neurons 
equivalent?

?
Trivial

Not Trivial
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HAANA has produced a number of spiking 
numerical algorithms

 Cross-correlation
 Severa et al., ICRC 2016

 SpikeSort 
 Verzi et al., submitted

 SpikeMin

 SpikeMax

 SpikeOptimization
 Verzi et al., IJCNN 2017

 Sub-cubic (i.e., Strassen) constant depth matrix multiplication
 Parekh et al., submitted
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A Velocimetry Application

 A motivating application is the 
determination of the local velocity in a 
flow field

 The maximal cross-correlation between 
two sample images provides a velocity 
estimate

 SNN algorithms are straightforward; 
exemplify core concepts
 Highly parallel
 Different neural representations
 Modular, precise connectivity
 Time/Neuron tradeoff
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Time Multiplexed Cross Correlation

Time-coded Inputs

• Temporal Coding

Feature Detectors

• Rate Coding

Integrators

• Latency Coding

Fires regularly; forces 

integrator to fire

Temporal Coding: 𝑂(𝑛) neurons; 

𝑂(𝑛) runtime

Parallelize inputs and 

corresponding timesteps to 

achieve 𝑂 𝑛2 neurons; 𝑂(1)

runtime
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Cross-Correlation Exhibits Time/Neuron 
Tradeoff

• Exchange Time Cost ↔ 

Neuron Cost

• Complexity is unchanged

• Neurons: 𝑶 𝒏𝟐 ↔ 𝑶 𝒏

• Time: 𝑶 𝟏 ↔ 𝑶 𝒏

Inputs

• One neuron per 

function per 

dimension

Inner products all 

computed in 

parallel

Output signal routed to 

Argmax

12

Severa et al., ICRC 2016



13

Strassen formulation of matrix multiply enables less than O(N3) neurons 

– resulting in less power consumption

“Neural” network for matrix multiplication

Standard: 

8Ms, 4As → 

O(N3)

Strassen: 

7Ms, 18A/Ss→ 

O(N2+e)

Parekh et al., submitted



Strassen multiplication in neural hardware may 

show powerful advantages
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Theoretical models of the brain do not need to 
capture everything
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How do we take advantage of neuroscience?

Primate visual cortex
Felleman and Van Essen, 1991

Hippocampus
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View of brain as computing system
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Cortex – hippocampus interaction can extend 
AI to more complete computing system

 Cortex learns to process 
sensory information at 
different levels of 
abstraction
 Similar to deep learning, though 

more sophisticated in biology

 Hippocampus would be a 
content addressable memory
 Provide context and retrieval 

cues to guide cortical 
processing
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A robust hippocampus abstraction can bring 
a complete neural system to AI

 Desired functions
 Learn associations between cortical 

modalities
 Encoding of temporal, contextual, and 

spatial information into associations
 Ability for “one-shot” learning
 Cue-based retrieval of information

 Desired properties
 Compatible with spiking representations
 Network must be stable with adaptation
 Capacity should scale nicely
 Biologically plausible in context of 

extensive hippocampus literature
 Ability to formally quantify costs and 

performance
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Formalizing CAM function one 
hippocampus layer at a time

 Constraining EC 
inputs to have 
“grid cell” structure 
sets DG size to 
biological level of 
expansion (~10:1)

 Mixed code of broad-
tuned (immature) neurons and 
narrow tuned (mature) neurons 
confirms predicted ability to encode 
novel information
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William Severa, NICE 2016

Severa et al., Neural Computation, 2017



Brain uses a different approach to processing 
in memory
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Questions?

Thanks to Sandia’s LDRD HAANA Grand Challenge and the DOE 
NNSA Advanced Simulation and Computing program 
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