Simulation and Visualization of Custom Neuromorphic Hardware using NeMo

MARK PLAGGE NEIL MCGLOHON CAITLIN ROSS CHRISTOPHER D. CAROTHERS

NeMo:

Uses Parallel Discrete Event Simulation (PDES) Built on top of ROSS (Rensselaer Optimistic Simulation System) Able to simulate existing and novel neuromorphic hardware models Validated against TrueNorth

IAPSE

C16 R229

NeMo and NeMo 2

NeMo 1

RENDSEL

NeMo 2

IO Details

- Embedded Lua interpreter
- Network configuration files are valid Lua source
 - Allows very flexible and expressive configuration
 - Potential dynamic behaviors
 - Fine grained error checking

IO Details

Embedded Lua interpreter

```
--NeMo Configuration-
cores = 256
neuronsPerCore = 256
neuronWeights = 4
--Neuron Definitions-
neurons = { TN_2_0 = {type = "TN", coreID=2, localID =0, alpha=1, beta=2,...},
TN_2_1 = {type = "TN", coreID=2, localID =1, alpha=3, beta=0,...},
TN_2_2 = {type = "TN", coreID=2, localID =2, alpha=4, beta=0,...},
TN_2_3 = {type = "TN", coreID=2, localID =3, alpha=4, beta=0,...}
```


NeMo Instrumentation

- New ROSS / CODES feature
 - Low model overhead instrumentation
- Implemented in NeMo:
 - Event Tracing
 - Tracks Neuron Activity:
 - Spikes & Integration Per Tick
 - Sent Messages

Performance

- Excellent performance when simulating large systems and smaller systems
- Able to simulate many types of hardware
- Small enough memory footprint to run simple models on desktop hardware

Instrumentation

- Adds ability to trace and debug models
- Currently provides way to view core activity over time
- Potential applications include
 - Power use estimates
 - Core-wise debugging

Future Work

- Integration with supercomputing simulation framework
- Further performance and usability improvements

NeMo

Open Source Neuromorphic Hardware Modeling https://github.com/markplagge/NeMo plaggm@rpi.edu

Appendix Notes and Extras

Input File Def / Status

- Still WIP Currently 2 Files:
- CSV for input spikes
 - (time, destCore, destAxon)
- Lua for network config
 - List of defined variables
 - Dictionary (key/value pair) per neuron
 - Subject to change Final def. will be uploaded to NeMo GitHub Wiki

Weak Scaling Wall-Clock Time

Performance Results

- Weak Scaling on the Blue Gene/Q
- Simulation ran for 1,000 Ticks

www.rpi.edu

1 second real-time

COMPASS Comparison

- COMPASS results were reported as neurosynaptic events per second
- NeMo's results were total events per second
- Includes all axon, synapse, and neuron events
 - To compare, we calculated equivalent COMPASS events per second

COMPASS Comparison

- For every neuron spike in NeMo-ES
 - 256 events generated with one axon event
- Assumed that COMPASS has 50/50 remote to local events

$$e_{total} = s_{reported} \times 2 \times f$$

$$e_{second} = \frac{e_{total}}{t}$$

$$e_{second/rack} = \frac{e_{second}}{16}$$
w.rpi.edu

Validation

Validated NeMo against two of Izhikevich's Biologically Relevant Behaviors as seen in Cassidy, et al. 2013

