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Neuromorphic Computing at HRL

LABORATORIES

Simple or Complex? A

- Trade-offs lead to designs with many
simple neurons, or a few complex ones ‘

- HRL, in DARPA SyNAPSE, chose
complexity over multiplicity

- Scaling up from there is likely easier

# Neurons

HRL's first real chip — “Surfrider”:

- 576 Neurons, 37k Synapses

- Axonal delays

- Synaptic kinetics

- Spike Timing Dependent Plasticity
- Again, complexity over scale
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LABORATORIES

Reservoir Computing with HRL Surfrider

Reservoir computing
provides a way to use a
small network for
relatively complex
applications:

Pattern Recognition
- Audio

- Video

- Mobile sensor

Anomaly Detection
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Summary of Surfrider Results

LABORATORIES

Reservoir computing methods using Surfrider were
especially successful for spectral data
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Summary of Surfrider Results
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Image data is also usable, but only at oot Statue Stap!er
extremely low resolutions. \1:
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Neuromorphic Computing at HRL
LABORATORIES Latigo Chip
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“Latigo” contains 1024 neurons, 131k synapses

Increase from 96 I/Os to at least 512 — Thousands with additional board dev
Each neuron has local parameters

New features: Short term potentiation, homeostatic plasticity

Intrinsic support for chip tiling

Neurobiological dynamics while maintaining low size, weight, and power
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What Can These Features Do?
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The combination of STDP (excitatory and inhibitory) and STP allows self-tuning
critical dynamics
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A single high-level parameter search can find networks that look generally useful

Stepp, N., Plenz, D., & Srinivasa, N. (2015). Synaptic plasticity enables adaptive self-tuning critical networks. PLoS ComputBiol, 11(1), €1004043.
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Exploiting Self-tuning Criticality
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Exploiting self-tuning criticality in hardware gets around application specifics
- With lots of complex features, parameter space is large and not smooth

- Latigo has 4 STDP, 4 STP and 2 HP parameters at every neuron

- Also voltage thresholds and synaptic time-constants
- A general set-point means one-time parameter tuning
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Srinivasa, N., Stepp, N., & Cruz-Albrecht, J. (2015). Criticality as a Set-Point for Adaptive Behaviorin Neuromorphic Hardware. Frontiers in neuroscience, 9.
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Criticality on Latigo?
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Avalanche sizes are consistent with a power-law

- Small avalanches are near critical branching exponent -1.5

- Larger avalanchesfall near -1, literal 1/f

- Consistent with Stepp et al (2015) — input causes deviation from criticality, but self-tuning
force is still present

Self-tuning criticality is achievable on the Latigo hardware
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Exploiting Criticality for Reservoir Computing
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The central claim of Srinivasa et al
(2015) is that self-tuning criticality is
general purpose

Here we apply the critical network to
an intrusion detection problem:

— Baseline Traffic
— Attack Traffic
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The self-tuning critical reservoir is
able to perform well without
problem-specific tuning



Complicated Hardware for Complex

Dynamics
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Advanced neurobiological features
support complex dynamics in
neuromorphic hardware

Complex behavior such as criticality and
self-organization promise non-algorithmic
solutions where algorithms are hard to
write, e.g.

- Problem agnostic parameter tuning

- Adaptable inverse kinematics

A
When contained in extremely low SWAP 2 I\
hardware, these features enable o \
capabilities on small or unattended o S. .
platforms beyond simpler neuromorphic fh >
systems
>

Complexity
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