Constraints on sequence processing speed in biological
neuronal networks

Younes Bouhadjar

Institute of Neuroscience and Medicine (INM-6) & Peter-Grinberg Institute (PGI-7) Julich Research Centre, Germany
In collaboration with Markus Diesmann, Rainer Waser, Dirk J. Wouters, Tom Tetzlaff

Thursday, 25 July 2019 (ICONS)

9 JULICH

Forschungszentru m



Introduction



Sequence processing (learning & prediction)

e fundamental computation performed by the neocortex



Sequence processing (learning & prediction)

e fundamental computation performed by the neocortex
e examples: reading, motor control, sensory processing (visual, tactile, auditory) ...



Sequence processing (learning & prediction)

e fundamental computation performed by the neocortex
e examples: reading, motor control, sensory processing (visual, tactile, auditory) ...
e context dependent prediction of elements in discrete time series



Sequence processing (learning & prediction)

e fundamental computation performed by the neocortex

e examples: reading, motor control, sensory processing (visual, tactile, auditory) ...
e context dependent prediction of elements in discrete time series

e generation of a mismatch signal if prediction doesn’t match input
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Hierarchical Temporal Memory (HTM)

e mechanistic description of sequence processing [Hawkins et al. 2016]
e accounts for:
= morphology of cortical (pyramidal) neurons
m functional role of dendritic action potentials
= online continuous learning
= |ocal learning rules
= context dependency (higher-order predictions)
= multiple simultaneous predictions
e abstractions:
= binary neurons
= updated in discrete time steps with no biological meaning
m artificial, adhoc connectivity constraints
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What are the biological features that
determine sequence processing speed?

e requires reformulating the HTM model in terms of biological ingredients, in
particular:
= continuous time dynamics with spike based interaction between network
elements, and
= neuronal, synaptic and plasticity dynamics with realistic time constants
[Avermann et al. 2012]



Model
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Plasticity

e spike-timing-dependent structural plasticity [Nevian et al. 2006]
e each synapse characterized by permanence (P) and weight ())
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How the model learns
sequence prediction?



Initialization

e sparse random connectivity between minicolumns

e random initial values of permanences
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Results



Task

e prediction of characters in a set of sequences of length L
m sequence 1: A,B,C,D, E, F ..
m sequence 2:C, E,F, A B,D...
|
|

sequencen: E, F,C, B, D, A...

e batch of data = [sequence 1, sequence 2, ..., sequence n]



Prediction performance

e monotonous decrease of prediction error with number of training episodes
e saturation of prediction error due to residual task ambiguity
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Processing speed

e model predicts optimal range of interstimulus intervals
e this range is determined by neural parameters
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Conclusion

e revised HTM model supports successful sequence processing

e prediction of optimal range of processing speeds (inter-stimulus intervals) with
lower and upper bounds constrained by neuronal and synaptic parameters
(e.g. time constants, coupling strengths)

e QOutlook:
m upscaling of task complexity
m comparison to results of psychophysical experiments



ACKNOWLEDGMENTS



Acknowledgments

e Helmholtz Association
e Juelich Research center
¢ Human Brain Project



References



. [1] Hawkins, J., & Blakeslee, S. (2007).0n intelligence: How a new understanding
ofthe brain will lead to the creation of truly intelligent machines. Macmillan.

« [2] Hawkins, J., & Ahmad, S. (2016). Why neurons have thousands of synapses,
atheory of sequence memory in neocortex.Frontiers in Neural Circuits 10.

« [3] Avermann, M., Tomm, C., Mateo, C., Gerstner, W., & Petersen, C. C. (2012).
Microcircuits of excitatory and inhibitory neurons in layer 2/3 of mouse barrel
cortex. Journal of neurophysiology, 107(11), 3116-3134.

« [4] Nevian, T., and Sakmann, B. (2006). Spine Ca2+ signaling in spike-timing-
dependent plasticity. Journal of Neuroscience, 26(43), 11001-11013.



