Constraints on sequence processing speed in biological neuronal networks

Younes Bouhadjar

Institute of Neuroscience and Medicine (INM-6) & Peter-Grünberg Institute (PGI-7) Jülich Research Centre, Germany

In collaboration with Markus Diesmann, Rainer Waser, Dirk J. Wouters, Tom Tetzlaff

Thursday, 25 July 2019 (ICONS)

Introduction

• fundamental computation performed by the neocortex

- fundamental computation performed by the neocortex
- examples: reading, motor control, sensory processing (visual, tactile, auditory) ...

- fundamental computation performed by the neocortex
- examples: reading, motor control, sensory processing (visual, tactile, auditory) ...
- context dependent prediction of elements in discrete time series

- fundamental computation performed by the neocortex
- examples: reading, motor control, sensory processing (visual, tactile, auditory) ...
- context dependent prediction of elements in discrete time series
- generation of a mismatch signal if prediction doesn't match input

- mechanistic description of sequence processing [Hawkins et al. 2016]
- accounts for:

- mechanistic description of sequence processing [Hawkins et al. 2016]
- accounts for:
 - morphology of cortical (pyramidal) neurons

- mechanistic description of sequence processing [Hawkins et al. 2016]
- accounts for:
 - morphology of cortical (pyramidal) neurons
 - functional role of dendritic action potentials

- mechanistic description of sequence processing [Hawkins et al. 2016]
- accounts for:
 - morphology of cortical (pyramidal) neurons
 - functional role of dendritic action potentials
 - online continuous learning

- mechanistic description of sequence processing [Hawkins et al. 2016]
- accounts for:
 - morphology of cortical (pyramidal) neurons
 - functional role of dendritic action potentials
 - online continuous learning
 - Iocal learning rules

- mechanistic description of sequence processing [Hawkins et al. 2016]
- accounts for:
 - morphology of cortical (pyramidal) neurons
 - functional role of dendritic action potentials
 - online continuous learning
 - Iocal learning rules
 - context dependency (higher-order predictions)

- mechanistic description of sequence processing [Hawkins et al. 2016]
- accounts for:
 - morphology of cortical (pyramidal) neurons
 - functional role of dendritic action potentials
 - online continuous learning
 - Iocal learning rules
 - context dependency (higher-order predictions)
 - multiple simultaneous predictions

- mechanistic description of sequence processing [Hawkins et al. 2016]
- accounts for:
 - morphology of cortical (pyramidal) neurons
 - functional role of dendritic action potentials
 - online continuous learning
 - Iocal learning rules
 - context dependency (higher-order predictions)
 - multiple simultaneous predictions
- abstractions:

- mechanistic description of sequence processing [Hawkins et al. 2016]
- accounts for:
 - morphology of cortical (pyramidal) neurons
 - functional role of dendritic action potentials
 - online continuous learning
 - Iocal learning rules
 - context dependency (higher-order predictions)
 - multiple simultaneous predictions
- abstractions:
 - binary neurons

- mechanistic description of sequence processing [Hawkins et al. 2016]
- accounts for:
 - morphology of cortical (pyramidal) neurons
 - functional role of dendritic action potentials
 - online continuous learning
 - Iocal learning rules
 - context dependency (higher-order predictions)
 - multiple simultaneous predictions
- abstractions:
 - binary neurons
 - updated in discrete time steps with no biological meaning

- mechanistic description of sequence processing [Hawkins et al. 2016]
- accounts for:
 - morphology of cortical (pyramidal) neurons
 - functional role of dendritic action potentials
 - online continuous learning
 - Iocal learning rules
 - context dependency (higher-order predictions)
 - multiple simultaneous predictions
- abstractions:
 - binary neurons
 - updated in discrete time steps with no biological meaning
 - artificial, adhoc connectivity constraints

What are the biological features that determine sequence processing speed?

 requires reformulating the HTM model in terms of biological ingredients, in particular:

What are the biological features that determine sequence processing speed?

- requires reformulating the HTM model in terms of biological ingredients, in particular:
 - continuous time dynamics with spike based interaction between network elements, and

What are the biological features that determine sequence processing speed?

- requires reformulating the HTM model in terms of biological ingredients, in particular:
 - continuous time dynamics with spike based interaction between network elements, and
 - neuronal, synaptic and plasticity dynamics with realistic time constants [Avermann et al. 2012]

Network

- Excitatory neuron
- Inhibitory neuron
- -• Static Excitatory
- Plastic
- Pontential connectivity
- -• Inhibitory connection

Neurons

- Dendrite (LIF)
- Excitatory connection
- −● Inhibitory connection
- ··
 Somatodendritic

Plasticity

- spike-timing-dependent structural plasticity [Nevian et al. 2006]
- each synapse characterized by permanence (P) and weight (J)

Plasticity

- spike-timing-dependent structural plasticity [Nevian et al. 2006]
- each synapse characterized by permanence (P) and weight (J)

Plasticity

- spike-timing-dependent structural plasticity [Nevian et al. 2006]
- each synapse characterized by permanence (P) and weight (J)

How the model learns sequence prediction?

Initialization

- sparse random connectivity between minicolumns
- random initial values of permanences

Before learning

Before learning

Before learning

Results

Task

- prediction of characters in a set of sequences of length L
 - sequence 1: A, B, C, D, E, F ...
 - sequence 2: C, E, F, A, B, D …
 -
 - sequence n: E, F, C, B, D, A ...
- batch of data = [sequence 1, sequence 2, ..., sequence n]

Prediction performance

- monotonous decrease of prediction error with number of training episodes
- saturation of prediction error due to residual task ambiguity

number_of_minicolumns=10, number_of_E-neuron_per_mini-column=30, C=10, n=2

Processing speed

- model predicts optimal range of interstimulus intervals
- this range is determined by neural parameters

• revised HTM model supports successful sequence processing

- revised HTM model supports successful sequence processing
- prediction of optimal range of processing speeds (inter-stimulus intervals) with lower and upper bounds constrained by neuronal and synaptic parameters (e.g. time constants, coupling strengths)

- revised HTM model supports successful sequence processing
- prediction of optimal range of processing speeds (inter-stimulus intervals) with lower and upper bounds constrained by neuronal and synaptic parameters (e.g. time constants, coupling strengths)
- Outlook:

- revised HTM model supports successful sequence processing
- prediction of optimal range of processing speeds (inter-stimulus intervals) with lower and upper bounds constrained by neuronal and synaptic parameters (e.g. time constants, coupling strengths)
- Outlook:
 - upscaling of task complexity

- revised HTM model supports successful sequence processing
- prediction of optimal range of processing speeds (inter-stimulus intervals) with lower and upper bounds constrained by neuronal and synaptic parameters (e.g. time constants, coupling strengths)
- Outlook:
 - upscaling of task complexity
 - comparison to results of psychophysical experiments

ACKNOWLEDGMENTS

Acknowledgments

- Helmholtz Association
- Juelich Research center
- Human Brain Project

References

- [1] Hawkins, J., & Blakeslee, S. (2007).On intelligence: How a new understanding of the brain will lead to the creation of truly intelligent machines. Macmillan.
- [2] Hawkins, J., & Ahmad, S. (2016). Why neurons have thousands of synapses, atheory of sequence memory in neocortex. Frontiers in Neural Circuits 10.
- [3] Avermann, M., Tomm, C., Mateo, C., Gerstner, W., & Petersen, C. C. (2012).
 Microcircuits of excitatory and inhibitory neurons in layer 2/3 of mouse barrel cortex. Journal of neurophysiology, 107(11), 3116-3134.
- [4] Nevian, T., and Sakmann, B. (2006). Spine Ca2+ signaling in spike-timingdependent plasticity. Journal of Neuroscience, 26(43), 11001-11013.