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fundamental	computation	performed	by	the	neocortex
examples:	reading,	motor	control,	sensory	processing	(visual,	tactile,	auditory)	…
context	dependent	prediction	of	elements	in	discrete	time	series
generation	of	a	mismatch	signal	if	prediction	doesn’t	match	input
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Hierarchical	Temporal	Memory	(HTM)
mechanistic	description	of	sequence	processing	[Hawkins	et	al.	2016]
accounts	for:

morphology	of	cortical	(pyramidal)	neurons
functional	role	of	dendritic	action	potentials
online	continuous	learning
local	learning	rules
context	dependency	(higher-order	predictions)
multiple	simultaneous	predictions

abstractions:
binary	neurons
updated	in	discrete	time	steps	with	no	biological	meaning
artificial,	adhoc	connectivity	constraints
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What	are	the	biological	features	that
determine	sequence	processing	speed?

requires	reformulating	the	HTM	model	in	terms	of	biological	ingredients,	in
particular:

continuous	time	dynamics	with	spike	based	interaction	between	network
elements,	and
neuronal,	synaptic	and	plasticity	dynamics	with	realistic	time	constants
[Avermann	et	al.	2012]
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How	the	model	learns
sequence	prediction?



Initialization
sparse	random	connectivity	between	minicolumns
random	initial	values	of	permanences
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Results



Task
prediction	of	characters	in	a	set	of	sequences	of	length	L

sequence	1:	A,	B,	C,	D,	E,	F	…
sequence	2:	C,	E,	F,	A,	B,	D	…
…
sequence	n:	E,	F,	C,	B,	D,	A	…

batch	of	data	=	[sequence	1,	sequence	2,	…,	sequence	n]



Prediction	performance
monotonous	decrease	of	prediction	error	with	number	of	training	episodes
saturation	of	prediction	error	due	to	residual	task	ambiguity

number_of_minicolumns=10,	number_of_E-neuron_per_mini-column=30,	C=10,	n=2





Processing	speed
model	predicts	optimal	range	of	interstimulus	intervals
this	range	is	determined	by	neural	parameters
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Conclusion
revised	HTM	model	supports	successful	sequence	processing
prediction	of	optimal	range	of	processing	speeds	(inter-stimulus	intervals)	with
lower	and	upper	bounds	constrained	by	neuronal	and	synaptic	parameters
(e.g.	time	constants,	coupling	strengths)

Outlook:
upscaling	of	task	complexity
comparison	to	results	of	psychophysical	experiments
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