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Neuromorphic Computing Devices

[http://apt.cs.manchester.ac.uk/projects/SpiNNaker]

Neuromorphic computing devices will offer billions of energy-efficient neurons 
Yet concrete non-learning applications realizing this potential remain elusive

§ E.g., SpiNNaker, IBM True North, and Intel Loihi
§ Simple artificial neurons offer massive localized parallelism
§ Offer millions of energy-efficient neurons in compact 

footprints, with billions likely in the near future  

§ Motivated by learning-oriented applications
§ Limited benchmarks demonstrating fair and rigorous advantage
§ Neuromorphic architectures are massive graphs!



Graph Algorithms

Graph algorithms are at the heart of myriad applications: 
navigation, social network analysis, cybersecurity, logistics, DNA analysis, … 

s

3

t

2

6

7

4

5

24

18

2

9

14

15 5

30

20

44

16

11

6

19

6

§ Based on primitive algorithms for: paths, flows, cuts, clustering, …
§ Overall performance often dominated by performance on primitives
§ Graph500 benchmarks primitives at massive scale
§ Current approaches hampered by demise of Moore’s law



Neuromorphic Graph Algorithms

Neuromorphic graph algorithms naturally leverage massive-scale neuromorphic devices
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1. Scalable graph analysis as data needs grow well into the future
2. Rigorous assessment and validation of neuromorphic computing
3. Bonus: extending the scope of neuromorphic beyond learning



Current Neuromorphic Graph Algorithms

Study of Neuromorphic Graph Algorithms (NGAs) is limited

Landscape of current neuromorphic applications 
based on 2500+ references
[Schuman et al., https://arxiv.org/abs/1705.06963, 2017]

§ Recent survey by Schuman et al. of neuromorphic computing covering 
2500+ references had only 8 citations of graph applications (see figure)

§ Most of above graph applications have a learning-oriented component
(Hopfield networks or Boltzmann machines)

§ A few spike-based graph primitives papers have emerged recently
(e.g., [Hamilton, Mintz, Schuman, https://arxiv.org/abs/1903.10574, 2019])

§ Timely opportunity for NGAs!

https://arxiv.org/abs/1705.06963
https://arxiv.org/abs/1903.10574


Dynamic Programming

Dynamic programming is a general technique for solving certain kinds of discrete optimization problems
Dynamic programming consolidates redundant computation

[https://blog.usejournal.com/top-50-dynamic-programming-practice-problems-4208fed71aa3]
[https://programming.guide/dynamic-programming-vs-memoization-vs-tabulation.html]
[https://medium.com/@shmuel.lotman/the-2-00-am-javascript-blog-about-memoization-41347e8fa603]

𝑓𝑖𝑏 𝑛 = 𝑓𝑖𝑏 𝑛 − 1 + 𝑓𝑖𝑏 𝑛 − 2 ; 𝑓𝑖𝑏 1 = 1, 𝑓𝑖𝑏 2 = 1



Broad Applications of Dynamic Programming

Wikipedia: 30 applications across diverse domains
[https://en.wikipedia.org/wiki/Dynamic_programming]

Another list with 50 applications
[https://blog.usejournal.com/top-50-dynamic-programming-
practice-problems-4208fed71aa3]

Dynamic programming is a general technique for solving certain kinds of discrete optimization problems



Spiking Dynamic Programming Approach

New neuromorphic algorithms for dynamic programming
Generically solves a broad class of dynamic programs

Spiking shortest paths algorithm
[Aibara et al., IEEE Int. Symp. on Circuits and Systems, 1991]
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§ Our dynamic programming algorithm leverages shortest path NGA

§ Single neuron per dynamic program table entry

§ Employs delays on links (simulable using recurrent neurons)

§ Novel temporal encoding: time when neuron first fires represents 
value of dynamic program table entry



Spiking Dynamic Programming Example

New neuromorphic algorithms for dynamic programming
Spike times encode dynamic programming table values

Dynamic Program for Knapsack Problem

Each table entry is value of best knapsack solution 
of weight at most W using items {1,…,k}

Knapsack Problem:
N items, each with weight wi and value vi

Goal: pick subset of items of weight at most W,
maximizing total value.

3,5

2,2

2,5

p3

0

= 6

𝑇 3,5 = 𝑚𝑎𝑥{𝑇 2,5 − 𝑤4 + 𝑝4, 𝑇 2,5 }
= 3

Spiking approach: T[i,j] encoded as time neuron (i,j) receives 
incoming spike on last of its incoming links 



Practical Considerations and Extensions

§ Dynamic program graph must be simulated on neuromorphic hardware graph
New graph embedding problems and techniques

§ Neuromorphic hardware has a fixed minimum delay
Problem-specified delays must be scaled, introducing multiplicative factor to running time

§ Dynamic programming graph loading and readout (I/O) costs may present bottlenecks
Optimized problem-specific algorithms possible (we do so for longest increasing subsequence)

§ Spiking approach as presented only gives value solution
Can use O(log n) extra neurons per graph node as memory to store solution
Novel Hebbian learning approach on edges also works!
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Intuitively, the vertex i in G is being represented in Hn with the vertices
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in Hn. The arc ij in G then roughly corresponds to the arc v+ijv
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that correspond to the same vertex in G have ✏ delay.
We claim that finding a shortest path from vertex i to vertex j in G is now equivalent to finding

a shortest path from v�ii to v�jj in Hn. To see this, let us verify that if ij is an edge in G, then the

length of the path from v�ii to v+jj in Hn is still `(ij); the claim then follows by induction. Indeed,

the path from v�ii to v�jj goes through vertices

v�ii , v
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ii , . . . v

+
ij , v

�
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and thus has length

✏+ |j � i|✏+ [`(ij)� (2|i� j|+ 1)✏] + |j � i|✏ = `(ij).

Recall that we initially scaled all edge lengths in G up until the smallest length was 2n✏. This
was necessary so that Type 2 arcs in Hn have delay at least ✏. However, it also means that the
running time of the neuromorphic Dijkstra’s algorithm gets blown up by something like a factor n
(if the smallest edge length of G was ✏.) We would like to reduce this blow-up, perhaps by adopting
another embedding scheme.

We could also change the definition of Hn by contracting Type 1 arcs. In this case we should
set the delays of the Type 2 arcs to be `(ij)� 2|i� j|✏.

3 Embedding using planarizing gadgets

In this section we describe another embedding scheme that only works if the input graph has
maximum degree 4. Specifically, we show that any such input graph G with n vertices (and thus
O(n) arcs) can be embedded into a planar graph H on O(n + c) vertices, where c is the crossing
number of G.

Standard degree-reduction gadgets (like replacing a high-degree vertex with a cycle or a tree)
do not seem to work because all arcs or edges must have delay at least ✏ > 0.

The embedding is as follows. Use the isolation lemma to perturb the edge weights and make
sure shortest paths are unique. Scale all arc lengths so that the minimum arc length is 4✏. Fix a
drawing of G, and planarize it as described in Figures 2. The result is H.

(a) (b)

Figure 2: (a) A crossing in G. Suppose the red arc has length a and the blue edge has length b.
(b) Corresponding planarizing gadget in H. Red arcs have delay (a � 2✏)/2, blue arcs have delay
(b � 2✏)/2, all other arcs have delay ✏. All arcs have unit weight except for the ones marked with
“-1,” which have weight -1.
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