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Last Year – A Robot with DANNA
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DANNA2 Model Overview
• Programmable Leaky Accumulate & Fire neurons
• Neurons include accompanying synapses (no synapse chains)
• Lookup based Synaptic Plasticity (STDP)
• Discrete integer time steps
• All fires at time t are simultaneous
• Two Array Types

– Grid Arrays – A fixed grid of programmable elements with
5 × 5 nearest neighbor connectivity

– Sparse Arrays – A directed graph of connected elements
(not runtime configurable)
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The DANNA2 Element

• Built of small components
– Programming Interface
– Delay/Distance Registers
– Synapse Table
– Synapse Units with

plasticity
– Accumulator
– Compare and Fire
– Sub-cycle Counter

• Configurable and Extensible
• Capable of running at

250MHz on FPGAs
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Figure 1: DANNA2 Element
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Software Simulation

• Before simulation begins, create a
network and queue inputs

• Check for incoming fires for time t
• Process internal fires for time t
• Schedule new fires after time t is

fully processed
• Log fires from designated outputs
• Stop the simulation once desired

time is reached
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Figure 2: Simulation Flow
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Performance Comparison

• Simple pass-through
network to compare
simulation performance

• Staggered firing pattern
across all inputs

• Under 120 inputs,
DANNA2 is > 10× faster
than DANNA

• At 7500 inputs, DANNA2
is 4.8× faster than DANNA

10 100 1000 10000

Inputs

1us

10us

100us

1ms

10ms

100ms

1s

10s

100s

T
im

e
 E

la
p

se
d

DANNA

DANNA2

Figure 3: Benchmark Results
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Example Application: Robonav
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Future Work
• VLSI design and fabrication?
• Multi-chip scaling of arrays
• Embedded robotic deployment – NeoN 2
• Investigation of leak and learning parameters
• Examine importance of precision in parameters
• Development of other hardware implementations including

an event driven processor
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Conclusion
• DANNA2 delivers an order of magnitude higher execution

speed than DANNA in both hardware and software
• Additional speed and capability can be utilized to improve

training performance
• Improves effective density compared to DANNA

– 60% more usable neurons than DANNA on the same FPGA
– Sparse arrays allow for optimized deployments

• Designed to be scalable and allow for new implementations
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