Four Simulators of the DANNA Neuromorphic Computing Architecture

Adam Disney, James Plank, Mark Dean

July 25, 2018

Overview

Introduction

DANNA

Goals for DANNA Simulation

The DANNA Simulators

Clock-based Simulator Event-based Simulator GPU Simulator - Single Network GPU Simulator - Multiple Networks

Performance

Stress Test EONS Test

Lessons Learned and Conclusions

Introduction

- Moore's Law Ending!
- Digital Spiking Neural Network Hardware
 - IBM TrueNorth
 - Intel Loihi
 - TENNLab DANNA

DANNA Overview

DANNA Quirks

- Two Clocks (Global and Port)
 - Port clock scans neighbors one at a time
 - Neurons can cause additional delay
- Fixed threshold
- Port Orientations enable online learning

Port Orientations

$\begin{array}{c ccc} F & 8 \\ & 7 & 0 & 1 \\ E & 6 & 2 \\ & 5 & 4 & 3 \\ D & C \end{array}$	9 A B	F 8 1 0 E 2 3 4 D C	9 7 6 A 5 8 B	$\begin{array}{c cccc} 9 & 8 & \\ \hline 7 & 0 & 1 \\ A & 6 & 2 \\ \hline 5 & 4 & 3 \\ B & C & \end{array}$	$\begin{array}{c cccc} F & 9 & 8 & F \\ \hline & 1 & 0 & 7 \\ F & A & 2 & 6 & E \\ \hline & 3 & 4 & 5 \\ D & B & C & D \end{array}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9 A B	F 8 3 4 E 2 1 0 D C	9 5 6 A 7 8	9 8 5 4 3 A 6 2 7 0 1 B C 1	
D C	В	D C	B	B C 7 0 1	D B C D 1 0 7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A 9	E 2 3 4 F 8	6 A 5 9	A 6 2 5 4 3 9 8	E A 2 6 E 3 4 5 F 9 8 F

Goals for DANNA Simulation

- Hardware Verification
- Communication
- Training (EONS)
- Utilization of available computing resources
- Exploration of large devices
- Exploration of future hardware

Simulator #1 - Clock-based Simulator

- Mimic hardware as much as possible
- Hardware I/O
- Small memory footprint
- Array of Unions (Neuron and Synapse)
- Look-up table for ports
- Two loops per port cycle

Simulator #2 - Event-based Simulator

- Central Priority Queue of events eliminates null work
- Converted from polling neighbors to pushing events
- Broadcasting list to determine arrival times
- Used to train NeoN network on all of ORNL Titan for 24 hours

NeoN

https://www.youtube.com/watch?v=d-cjX1n7bqU

Challenges with GPU Programming

- GPUs work best at duplicate tasks on multiple data points
- Divergence is costly
- High arithmetic intensity needed to hide slow global memory
- Can mitigate global memory cost with coalesced access

GPU Simulator - Single Network

- Clock-based simulator
- Divergence due to two element types
- Divergence eliminated by assigning warps to one element type
- Non-contiguous memory access due to port orientations
- Low arithmetic intensity
- Need large networks to get performance

GPU Simulator - Multiple Networks

- Common use case EONS with small networks
- Each block is an individual simulator
- Why not just run multiple versions of single?
 - Limit on active kernels
 - Can optimize at block level

Stress Test

Stress Test

- 224 tests for each network size for 10K cycles
 - $-15 \ge 15$
 - 80 x 80
- Randomized input generates random number of total events
- Clock runtime = $\mathcal{O}(tn)$
- Event runtime = $\mathcal{O}(e \log e)$

Test Machine

- Dual Xeon E
5-2697 v 3@ 2.60GHz
- GeForce GTX TITAN
- $\bullet\,$ Compiled with gcc v5.4.0 and CUDA 9.1

15 by 15 Network

80 by 80 Network

1000 by 1000 Network

EONS Test

- Classification on Breast Cancer Wisconsin dataset from UCI
- Array size = 27×27
- Population size of 1000
- 20 epochs where each network runs fitness
- 105K cycles per fitness run
- All EONS runs used the same randomization seed
- Average Neurons = 34.9
- Average Synapses = 61.8
- Average Events per 105K cycles = 26,413

EONS Test Results

Lessons Learned and Conclusions

- Clock-based useful in development of hardware and communications
- Event-based allowed much faster training (NeoN, etc.)
- GPU single network may be useful for future endeavors
- Current use case leaves event-based far superior

Four Simulators of the DANNA Neuromorphic Computing Architecture

Adam Disney, James Plank, Mark Dean

July 25, 2018