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But what plays the mischief 

with this masterly. 

Scaling Requires 
Sparsity 
•  Fully Connected Crossbar 
 

o Not sparse 

o Chip size scales quadratically 
with additional neurons 

 
o Neuron density decreases as 

neurons are added 
 
o Quickly becomes untenable 

for large numbers of neurons 
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But what plays the mischief 

with this masterly. 

Not All Sparsity 
Is Useful 
•  Network-on-Chip 

o Locally parallel connectivity 

o Globally serial connectivity 

o Network traffic saturates as 
crossbars are added 
(deadlock) 
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Successful people do what unsuccessful 
people are not willing to do. Don’t wish it 

were easier; wish you were better. 
JIM ROHN 

The Brain Has Solved 
This Problem 

The brain contains roughly 1011 neurons and only about 1014 synapses [1]. If it were fully 
connected, there would be an unfeasible 1022 synapses. Further, it is highly parallelizable and does 
not suffer from communication stalls.  



5 

But what plays the mischief 

with this masterly. 

Conventional small-world 
network

The MN3, which we show is 
small-world

Small-World 
Networks 
•  Many local connections but few 

long-range connections 

•  Balance wiring cost and global 
efficiency [2] 

 
•  Prevalent in the brain, social 

networks, electric power grids, 
and connected protein networks, 
to name a few [3] 
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Small-World Networks 

•  Formally, the small-world coefficient σ is defined by, 

σ = (C / Cr) / (L / Lr), 
 

      where C and Cr are the square clustering coefficients of the MN3 and a random bipartite 
      graph with the same number of total connections and arrangements of vertices, respectively, 
      and L and Lr are the average shortest paths between two nodes on the MN3 and the same 
      random graph. [4] 

 
•  If σ > 1, then the network is small-world. 

•  Typically, 
L ~ log(N), 

 
     where N is the total number of nodes. 
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But what plays the mischief 

with this masterly. 

Bipartite 
Connectivity 
•  MN3 connectivity can be 

represented as a bipartite graph 
[5] 

•  One class of vertices comprises 
the electrodes and the other 
comprises the wires 

•  If a wire goes over an electrode, 
then an edge is drawn between 
the pair 

•  Various graph metrics can be 
calculated 

Simple grid with four electrodes and 
two wires for demonstration purposes

Corresponding bipartite 
representation
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 Physical Nanowires 

J.C. Nino and J.D. Kendall - PCT/US2015/034414, (2015).  
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MN3 Nanowire Models 
Straight Wire 

•  Assumes wires are 
straight 

•  Wires go from one of the 
four sides to another 
unique side at random 

•  Computationally simple 
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MN3 Nanowire Models 
Straight Wire Arc Wire 

•  Assumes wires are 
straight 

•  Wires go from one of the 
four sides to another 
unique side at random 

•  Computationally simple 

•  Assumes wires are arcs 
of random radii 

•  Wires go from one of the 
four sides to a not 
necessarily unique side 
at random 
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MN3 Nanowire Models 
Straight Wire Arc Wire Pink Noise Wire 

•  Assumes wires are 
straight 

•  Wires go from one of the 
four sides to another 
unique side at random 

•  Computationally simple 

•  Assumes wires are arcs 
of random radii 

•  Wires go from one of the 
four sides to a not 
necessarily unique side 
at random 

•  Assumes wires follow a 
path generated by 
approximate pink noise 

•  Distances are 
autocorrelated 

•  Computationally 
expensive 
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Small-Worldness 

Straight Wire 

•  σ > 0 for all grid sizes, 
implying small-worldness 

•  Increases logarithmically 
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Small-Worldness 

Straight Wire Arc Wire 

•  σ > 0 for all grid sizes, 
implying small-worldness 

•  Increases logarithmically 

•  Behaves similarly to the 
straight wire model 
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Small-Worldness 

Straight Wire Arc Wire Pink Noise Wire 

•  σ > 0 for all grid sizes, 
implying small-worldness 

•  Increases logarithmically 

•  Behaves similarly to the 
straight wire model 

•  Similar to other two 
models but with more 
noise, which is expected 
with an increase in 
degrees of freedom 
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Future Work: Scale-Free Networks 

•  A scale-free networks, also called ultra small-world networks, are a subset of small-world 
networks 

•  The brain is a scale-free network [6]. 

•  Typically, 
L ~ log(log(N)), 

 
     where N is the total number of nodes [7]. 
 

Image:	h)ps://farm6.sta2cflickr.com/5572/14840495571_81ca4e1ebe_o.png	
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Modular Structure Sierpinski Carpet  
Variant 1 

Semi-annular 
Structure 

Future Work: Scale-Free Networks 

Sierpinski Carpet  
Variant 2 
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