Small-World Connectivity Exhibited in Memristive Nanowires

Ross D. Pantone Data Scientist Rain Neuromorphics

Jack D. Kendall Founder, CTO Rain Neuromorphics

Juan C. Nino Professor, Materials Science University of Florida

Scaling Requires Sparsity

- Fully Connected Crossbar
 - Not sparse
 - Chip size scales quadratically with additional neurons
 - Neuron density decreases as neurons are added
 - Quickly becomes untenable for large numbers of neurons

Network-on-Chip

Not All Sparsity Is Useful

Network-on-Chip

Locally parallel connectivity

Globally serial connectivity

 Network traffic saturates as crossbars are added (deadlock)

The Brain Has Solved This Problem

The brain contains roughly 10¹¹ neurons and only about 10¹⁴ synapses [1]. If it were fully connected, there would be an unfeasible 10²² synapses. Further, it is highly parallelizable and does not suffer from communication stalls.

Small-World Networks

- Many local connections but few long-range connections
- Balance wiring cost and global efficiency [2]
- Prevalent in the brain, social networks, electric power grids, and connected protein networks, to name a few [3]

The MN3, which we show is small-world

Small-World Networks

• Formally, the small-world coefficient σ is defined by,

where C and C_r are the square clustering coefficients of the MN³ and a random bipartite graph with the same number of total connections and arrangements of vertices, respectively, and L and L_r are the average shortest paths between two nodes on the MN³ and the same random graph. [4]

- If $\sigma > 1$, then the network is small-world.
- Typically,

where *N* is the total number of nodes.

 $\sigma = (C / C_r) / (L / L_r),$

 $L \sim \log(N),$

Bipartite Connectivity

- MN³ connectivity can be represented as a bipartite graph
 [5]
- One class of vertices comprises the electrodes and the other comprises the wires
- If a wire goes over an electrode, then an edge is drawn between the pair
- Various graph metrics can be calculated

Physical Nanowires

J.C. Nino and J.D. Kendall - PCT/US2015/034414, (2015).

MN³ Nanowire Models

Straight Wire

- Assumes wires are straight
- Wires go from one of the four sides to another unique side at random
- Computationally simple

MN³ Nanowire Models Arc Wire

Straight Wire

- Assumes wires are straight
- Wires go from one of the four sides to another unique side at random
- Computationally simple

- of random radii
- four sides to a not at random

• Assumes wires are arcs • Wires go from one of the necessarily unique side

MN³ Nanowire Models Arc Wire

Straight Wire

- Assumes wires are straight
- Wires go from one of the four sides to another unique side at random
- Computationally simple

- of random radii
- four sides to a not at random

Pink Noise Wire

• Assumes wires are arcs • Wires go from one of the necessarily unique side

- Assumes wires follow a path generated by approximate pink noise
- Distances are autocorrelated
- Computationally expensive

Small-Worldness

σ > 0 for all grid sizes,
implying small-worldness

Increases logarithmically

Small-Worldness

Increases logarithmically

straight wire model

Small-Worldness

Increases logarithmically

straight wire model

Similar to other two models but with more noise, which is expected with an increase in degrees of freedom

Future Work: Scale-Free Networks

- networks
- The brain is a scale-free network [6].
- Typically,

where *N* is the total number of nodes [7].

Image: https://farm6.staticflickr.com/5572/14840495571 81ca4e1ebe o.png

• A scale-free networks, also called ultra small-world networks, are a subset of small-world

 $L \sim \log(\log(N)),$

Future Work: Scale-Free Networks

Modular Structure

Sierpinski Carpet Variant 2

Sierpinski Carpet Variant 1

Semi-annular Structure

References

- Frontiers in Human Neuroscience, 3(31).
- [2] Kleinberg, J. (2000). The Small-world Phenomenon: An Algorithmic Perspective. 163-170.
- challenges. Neuroscience & Biobehavioral Reviews. 77, 286-300.
- Canonical Network Equivalance. PLoS ONE, 3.
- Connectivity. Neural Networks.
- Free Organization across Consciousness, Anesthesia, and Recovery: Evidence for Adaptive Reconfiguration. Anesthesiology, 113(5).

[1] Herculano-Houzel, S. (2009). The Human Brain in Numbers: A Linearly Scaled-up Primate Brain.

[3] Liao, X., Vasilakos, A., & He, Y. (2017). Small-world human brain networks: Perspectives and

[4] Humpries, M. D. & Gurney, K. (2008). Network Small-Worldness: A quantitative Method for Determining

[5] Pantone, R. D., Kendall J. D., & Nino, J. C. (2018). Memristive Nanowires Exhibit Small-World

[6] Lee, U., Oh, G., Kim, S., Noh, G., Choi, B., & Mashour, G. A. (2011). Brain Networks Maintain a Scale-

[7] Cohen, R. & Havlin, S. (2003). Scale-Free Networks Are Ultrasmall. *Physical Review Letters, 90(5).*