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Scaling Requires
Sparsity

Fully Connected Crossbar

* Fully Connected Crossbar

o Not sparse
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o Chip size scales quadratically
with additional neurons

o Neuron density decreases as
neurons are added
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Output Neurons o Quickly becomes untenable

for large numbers of neurons
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Not All Sparsity
|Is Useful

* Network-on-Chip
o Locally parallel connectivity
o Globally serial connectivity
o Network traffic saturates as

crossbars are added
(deadlock)



The Brain Has Solved

This Problem



Small-World
Networks

* Many local connections but few
long-range connections

» Balance wiring cost and global
efficiency [2]

 Prevalent in the brain, social
networks, electric power grids,
and connected protein networks,
to name a few [3]

Conventional small-world
network
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The MN3, which we show is
small-world




Small-World Networks

* Formally, the small-world coefficient o is defined by,
c=(C/C)I(LIL),

where C and C, are the square clustering coefficients of the MN® and a random bipartite
graph with the same number of total connections and arrangements of vertices, respectively,

and L and L, are the average shortest paths between two nodes on the MN* and the same
random graph. [4]

 If o>1, then the network is small-world.

* Typically,
L ~log(N),

where N is the total number of nodes.



Bipartite
Connectivity

« MN?3 connectivity can be
represented as a bipartite graph

[S]

* One class of vertices comprises
the electrodes and the other
comprises the wires

* |[f a wire goes over an electrode,
then an edge is drawn between
the pair

* Various graph metrics can be
calculated

0
0 1 2

Simple grid with four electrodes and

two wires for demonstration purposes

Electrodes Wires

Corresponding bipartite
representation




Physical Nanowires
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MN? Nanowire Models

 Assumes wires are
straight

* Wires go from one of the
four sides to another
unique side at random

« Computationally simple



MN-°> Nanowire Models
Arc Wire
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Assumes wires are  Assumes wires are arcs
straight of random radii

Wires go from one of the * Wires go from one of the
four sides to another four sides to a not
unigue side at random necessarily unique side

Computationally simple at random



MN? Nanowire Models
Arc Wire
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Assumes wires are  ASSUmes wires are arcs * Assumes wires follow a
straight of random radii path generated by
Wires go from one of the * Wires go from one of the approximate pink noise
four sides to another four sides to a not * Distances are

unique side at random necessarily unique side autocorrelated
Computationally simple at random « Computationally

expensive
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Future Work: Scale-Free Networks

A scale-free networks, also called ultra small-world networks, are a subset of small-world
networks

The brain is a scale-free network [0].

Typically, ~ () O)
L ~ log(log(N)), @ ~
where N is the total number of nodes [7]. ‘ ‘ Y—C
O N
9 ~—C
@ C
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Image: https://farm6.staticflickr.com/5572/14840495571 81lcadelebe o.png




Future Work: Scale-Free Networks
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