Two-terminal, soft, biomembrane-based devices that can sense, process, and learn

Joseph Najem Andy Sarles Pat Collier Alex Belianinov Katie Schuman

A two-terminal, biomolecular memristor featuring similar structure (biomembrane), switching mechanism (ion channels), and ionic transport modality as biological synapses while operating at considerably lower power.

- Biological synapses enable electrochemical transport of information. Key processes are voltage and ion-selective transport via transmembrane channels.
- The behaviors of synthetic memristors are largely phenomenological; they are also noisy and power-hungry!

Droplet Interface Bilayers: insulating model membranes

nakoshi, K., H. Suzuki, and S. Takeuchi, Anal. Chem., 2006. 78(24): p. 8169-8174. Holden, M.A., et al., J. Am. Chem. Soc., 2007. 129(27): p. 8650-8655. Hwang, W.L., et al., J. Am. Chem. Soc., 2008. 130(18): p. 5878-5879. Poulin, P.; Bibette, J., Langmuir 1998, 14 (22), 6341-6343.

Building blocks for cell-inspired compartmentalized materials...

Equivalent circuit

Current-voltage relationships of alm-doped biomembranes

Chua, L., Semiconductor Science and Technology 2014, 29 (10), 104001.

Najem, J. S.; et al. ACS Nano 2018.

Oil phase

Inserted lamethicin channel

Short-term learning across multiple voltage pulses (PPF & PPD)

So, what "states" are dictating these responses?

Electrowetting or wv of the second s

$$I = G(N_a, A_m)V$$
$$\frac{dN_a}{dt} = \frac{1}{\tau_0 e^{V/V_\tau}} \left(N_0 e^{V/V_e} - N_a \right)$$
$$\frac{dA_m}{dt} = \frac{1}{\tau_{ew}} \left(\alpha v^2 - A_m(t) \right)$$

$$G(V,t) = G_u N_a(V,t) A_0(1+A_m(t))$$

 N_a = number of alm pores per m² A_m = fractional change in area due to EW

Dynamics of alamethicin gating

Okazaki, T., et al., Biophysical Journal 2003, 85 (1), 267-273.

Dynamics of electrowetting

Reciprocal of memristance

Slow formation of new bilayer area and fast insertion of new channels leads to PPF-like short-term learning responses!

Online learning circuit application: Short- and Long-term learning

Sakib Hasan, Ryan Weiss, and Garrett Rose

Unpublished data (submitted)

Experimental demonstration of short-term learning

Unpublished data (submitted)

Ν Ε U R 0 Μ 0 RΡ HI ARCHITECTURES. LEARNING. APPLICATIONS.

Ryan Weiss, Sakib Hasan, and Garrett Rose

16

18

20

12

14

-V_{SD} = 130mV

Evolutionary Optimization for Neuromorphic Systems (EONS)

Network for EEG classification task: Training Accuracy: 98.5% Testing Accuracy: 98.5% 6 neurons, 6 synapses

Catherine Schuman, and Nick Skuda

Unpublished data (submitted)

Reconfigurable soft-matter interfaces exhibit memory capacitance too!

The same setup void of any memristive ion channels exhibits a memcapacitive behavior. Memcapacitors have been theorized but never realized.

National Laboratory

Unpublished data (in prep)

The same setup void of any memristive ion channels exhibits a memcapacitive behavior. Memcapacitors have been theorized but never realized.

Upon application of a transmembrane voltage bias v (DC or AC) two phenomena occur:

- Electrowetting which results in an increase in membrane area (i.e. radius *r*) driven by changes in surface tension.
- 2) Electrocompression which results in a decrease in membrane thickness (w) driven by compressive forces generated by the attraction between opposite charges.

State variable and equations

$$V = v(t)$$

$$q = C(r, w)v$$

$$\xi_{ew} \frac{dr(t)}{dt} + k_{ew}r(t) = f_{el}(t)$$

$$f_{el} = f_a + f_s$$

$$f_{el} = f_a + f_s$$

$$f_{el} = f_a + f_s$$

$$F_{ec}$$

$$F_{ec}$$

$$W_0 w(t) = F_{ec}(t)$$

Unpublished data (in prep)

Hexadecane Sinusoidal (150 mV, 0.17Hz)

Unpublished data (in prep)

Plasticity and signal processing

There are two time constants, one related to EC (the quick rise) and the other related to EW (the slow rise)...

Our system is great for sensing and signal processing applications

We are not limited to a single type of ion channels. Multiple stimuli-responsive ion channels could be used for applications in sensing and signal processing.

A wide variety of ion channels and pumps could be investigated

We would like to thank:

- Oak Ridge National Laboratory for funding this work
- Oak Ridge Leadership Computing Facility for providing computing support
- The National Science Foundation for funding this work
- Dr. R. Stanley Williams for his valuable input, suggestions, and insights

If you have any questions or suggestions please send me an email at najemjs@ornl.gov

Why ORNL, Why Now?

- Oak Ridge National Lab is a national leader in computation and materials research
- We are approaching the end of **Moore's** law era.
- The reliability of the IoT, edge, and cloud computing in **exponentially growing**.
- Power consumption and environmental considerations are the main problems humanity faces this century
- **Crosscutting efforts** in chemistry, biology, engineering and computation (with all the right people and ingredients available locally)
- Insight into the evolutionary path of many species

Response to pulses – control

Response to pulses – Hexadecane at RT

