MITIGATING SCHOLARLY CORPUS BIASES WITH CITATIONS: A CASE STUDY ON CORD-19

MICROSOFT RESEARCH, REDMOND WA & ALLEN INSTITUTE FOR ARTIFICIAL INTELLIGENCE, SEATTLE WA

Mitigating Biases in CORD-19 for Analyzing COVID-19 Literature Provisionally accepted The final, formatted version of the article will be

published soon. 🔽 Notify me

¹Microsoft Research (United States), United States ²Allen Institute for Artificial Intelligence, United States

FRONTIERS IN RESEARCH METRIC AND ANALYTICS

Special Topic on

Coronavirus Research Landscape: Resources, Utilities, and Analytic Studies

DOI: 10.3389/frma.2020.596624

ETHICAL AI: AN URGENT TOPIC TO OUR SOCIETY

THE WALL STREET JOURNAL.

By Michael Totty Nov. 3, 2020 10:00 am ET

JOURNAL REPORTS: TECHNOLOGY

How to Make Artificial Intelligence Less Biased

Al systems can unfairly penalize certain segments of the population especially women and minorities. Researchers and tech companies are figuring out how to address that.

The AI world is making a strong push to root out bias in AI systems, but it faces some significant obstacles. KEITH A. WEBB AND IMAGES FROM ISTOCK

TACKLING INFORMATION OVERFLOW WITH AI

CORD-19: The COVID-19 Open Research Dataset

Lucy Lu Wang^{1,*} Kyle Lo^{1,*} Yoganand Chandrasekhar¹ Russell Reas¹ Jiangjiang Yang¹ Douglas Burdick² Darrin Eide³ Kathryn Funk⁴ Yannis Katsis² Rodney Kinney¹ Yunyao Li² Ziyang Liu⁶ William Merrill¹ Paul Mooney⁵ Dewey Murdick⁷ Devvret Rishi⁵ Jerry Sheehan⁴ Zhihong Shen³ Brandon Stilson¹ Alex D. Wade⁶ Kuansan Wang³ Nancy Xin Ru Wang² Chris Wilhelm¹ Boya Xie³ Douglas Raymond¹ Daniel S. Weld^{1,8} Oren Etzioni¹ Sebastian Kohlmeier¹

¹Allen Institute for AI ² IBM Research ³Microsoft Research ⁴National Library of Medicine ⁵Kaggle ⁶Chan Zuckerberg Initiative ⁷Georgetown University ⁸University of Washington {lucyw, kylel}@allenai.org

- <u>3500+ articles/week by Mid March</u>
 - 372,698 articles as of November 15,2020
- Full text corpus: first released on March 16, 2020
 - Publisher contributions + archival services
- Activities
 - Open QA Challenge on Kaggle
 - TREC tracks at NIST
- Methodology: keyword query into various databases

"COVID" OR "COVID-19" OR "CORONAVIRUS" OR "2019-nCov" OR "SARS-COV" OR "MERS-COV" OR "Severe Acute Respiratory Syndrome" OR "Middle East Respiratory Syndrome"

ASSESSING BIASES BY <u>CORPUS EXPANSION</u> WITH CITATIONS

- Price, D., "<u>Networks of Scientific Papers</u>", Science 1965
- Notable network science models:
 - Preferential attachment, Albert and Barabasi, Science 1999
 - Individual node fitness, Caldarelli et al., *Physical Review Letters*, 2002
 - Latent space model, Papadopoulos et al., *Nature* 2012
 - Discrete choice, Overgoor et al., WWW-2019
- Methods evaluated:
 - Enclosure graph (Sinatra et al., "A century of physics", Nature Physics, 2015)
 - Closure graph: updated data available at Github: <u>https://aka.ms/magcord19mapping</u>

ENCLOSURE GRAPH

- From a seed collection of articles:
 - Expand to citing and cited (or both) articles
 - CORD-19 => CORD-19E
- **Observations:**
 - Bidirectional, single step traversal on citation networks
 - Cannot be made into iterative algorithm without topic overrun
 - Ex: citing a "tool" paper
 - Sensitive to seed quality

convolutional neural network

CLOSURE GRAPH

- Uni-direction, multiple step traversals
 - Continue until all references are in the expanded set
 - Mostly directed acyclic graph
- Motivations
 - Cover more background and lineage of knowledge
 - Discrete (discreet) Choice => Topic overrun less severe
- Surprise finding
 - Don't need full closure!
 - "Inflection" point seems to capture themes
- CORD-19C: full closure; CORD-19I: inflection closure

CLOSURE GRAPH GROWTH VS HOPS

Paper Count — Accumulated Citations

EMBEDDEDNESS: CITATIONS RECEIVED FROM WITHIN COLLECTION

TOPIC COVERAGE

Biology

Medicine Chemistry

Other

ARTICLE AGE DISTRIBUTION

DISTRIBUTION OF ARTICLE IMPORTANCE

*Details on saliency can be found here

PUBLICATION YEAR

JOURNAL COVERAGE/RANKINGS: CORD-19 VS CORD-19E

JOURNAL COVERAGE/RANKING: CORD-19 VS CORD-19I/C

WHERE IS RESEARCH CONDUCTED

CORD-19C

Publication Year

WHERE IS RESEARCH CONDUCTED

CORD-19E

CORD-19C

Publication Year

■ Africa ■ Americas ■ Asia ■ Europe ■ Oceania ■ Other

TEAM SIZE

■1-3 ■4-6 ■7-9 ■10-20 ■above 20 — AvgTeamSize — MedianTeamSize

CONCLUSIONS

- 1. Citations complement retrieval techniques
- 2. Analytics between CORD-19 and CORD-19E/I/C
 - Different: Topics, Age, Article/Journal impacts
 - Similar: Collaboration trends
- 3. Corpus expansion offers statistically smoother analytics
- 4. Closure graph findings support network science theories
 - Preferential attachments with fitness, discrete choice
- 5. Partial "inflection" closure is almost as good as full closure
- 6. Check out and build on our GitHub share <u>https://aka.ms/magcord19mapping</u>
- 7. Future studies
 - Not all citations are equal: need citation classification?
 - Probabilistic network traversal