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Solving PDEs with deep learning

o MN(x;u, {Du}; s(m))=0in (x,0) € D x Q - ° Analytical: u = f(x;m)
o AB(x,m,u)=0o0nxedDx0 e Discrete: U= F (x:0)

- Numerical methods

- Finding the “closest” function
- Discretize [1 Calc derivatives [| (optional) Integrate [ Linear algebra problem: Ax=Db [ Solve

- Machine learning
- Finding an approximate function / mapping
- Setup an objective function: min_||Ax - b||P [ Optimize

- Stochastic PDE

- Design

- Simulations can take very long time even on modern day supercomputers

- Can we leverage the machine learning advances to speed up the process of solving PDEs on
supercomputers?
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Deep learning constrained by physical laws

- Conventional applications of deep learning
- Reliance on abundance of data
- Lack of generalizability
- Application to areas where a physical law needs to be respected

- Integrate physical law with the model
- PDE residual models the loss function
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Formulation approaches

- PDE instance

e MN(x;u,[Dul;s)=0inxeD
e Bk, u)=0onxedD

- Pointwise predictions

(x,y,t) — EIE)

Input Output
(x.y)
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- PDE family solvers

o MN(xu, [Dul;s(n))=0in (x,0) e D xQ
e B(x,m,u)=00nxeadDx.Q

- Full-field predictions
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This work - DiffNet

INx} [Nx x Ny]

- We attempt to solve a family of parametric PDEs

- A stochastic Burgers’ equation:
- u+uu =0in (x,t) in [0,11%[0,%]
- Boundary condition: u(x=0, t) =0
- Initial condition: u(x, t=0) = % (1 - cos 2ncx)

- Learned model:
IC—> Gy — U ° E

- Multiscale problems demand high resolution, locally a
or globally =

- A full field approach, especially when aiming for
space-time problems can be demanding in memory
consumption

JOWA STATE
I‘O’CM UNIVERSITY @l NYU



DiffNet problem formulation

Solving PDE = training a 2D convolutional generative neural network G,

-

Input: initial condition u(x, 0)
Output: full-field solution u(x, t)

q . . ey [ Convolutional Layer
Loss function: PDE residual + initial/boundary _ 27 u(x,n)
[ 1 Residual Block with
conditions 2x2 upsampling

, | Dense Layer

L =L, + ALy,
Lp(0) = Ep,[[ A (Go(b,v)) — fII3],

Residual
Block with upsampling

. ® Variable no. of
‘ | 12 X, Upsampling blocks
‘BN: 42 { _]

Ly(9) = Eb| B(Go(b,v)) — bl|3].
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Implementation of forward model

- k'™ order derivatives approximated by convolutions with finite-difference kernels:

V]fx,t) ~ /U,(Qj, t) * Sé{;ﬁ,t)

- For 1** order derivatives, we use 3 x 3 Sobel kernels:

—2 —10 =3 -3 0 3
Sl=10 0 0| , S'=]|-100 10
3 10 3 -3 0 3
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Challenges of training on GPUs

- GPUs are the most popular compute platform for training DNNs
- Known limitation: they have relatively small available memory

- Training is usually done with very small mini-batches, which hinders convergence
- Worse yet, often times training is done on single GPU, impacting productivity

- Training DiffNet on domain sizes > 512 x 512 is not feasible on current GPUsl!

& 512x512
1024x1024 4

Tesla V100

Tesla RTX 6000

o
)
g
<)
S
@
£
v
©
3]
o

128x128
64x64

©sc20



Introducing DeepFusion

Platform-agnostic software framework for large-scale distributed deep-learning:
- Extends memory capacity way beyond GPU limits while delivering excellent strong scaling

- Strategy: distributed training of DiffNet on CPU clusters
- 5-10x more memory-per-node compared to GPUs
- Multiple cores-per-node connected via high-end low-latency interconnects
- Substantially cheaper price tag per node

No Stampede?
64x64 131.0 | 113.1
et | -

64x64

Virtua Virtua
ntel Xeon ntel Xeon ntel Xeon
Platinum 000 Platinum 160

Pl | | a4

128x128
256x256

astic EDR nte P h wall-clock ti
Interconnect Fabric Adapter Infiniband Omni-Path er-epoch wall-clock tines

Banidvadih 100 Gb/sec 100 Gb/sec 100 Gb/sec (Batch size 1024; 4 processes per node, 8 threads per process)
Topology | AWS Proprietary

Memory (GE)

Specification Stampede2
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DeepFusion: programming paradigm

- Uses hybrid OpenMP + MPI programming for efficient intra/inter-node communication
- Designed with parallelization in mind (“scaling as a first-class citizen”)

- Leverages Intel MKL-DNN for fast forward/backward propagation
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DeepFusion: data-parallel strategy

Multiple replicas of model are simultaneously trained to optimize a single objective

function:

- Mini-batches are equally split among available workers

- Forward & back-propagation are performed asynchronously; gradients are MPI_AlIReduce’d

Training data
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Data-parallel strategy (cont’d)

Solution robustness to parallelization: same problem is solved for any p

- Local mini-batches are drawn sequentially from sample pool by each worker

- Equal-size mini-batches across workers guarantees optimal load-balancing

N = [Ny/p], by = [bs/p]

Ny total samples —— 0>

global batch 1 global batch 2 global batch N,
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Loss vs. Epoch for different p

(DiffNet training on 256 x 256 domain size)

©sc20

12



Scaling experiments

DiffNet training on 1 - 128 nodes (8 - 1024 processes) of Stampede2

- 8 processes per node, 12 threads per process (on 96 available hardware threads)
- Batch size 1024 (4096 training examples)

256 x 256
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High-resolution DiffNet

DiffNet on 1024 X 1024 domain size (not previously done for such generative models):
Trained for a range of the initial condition parameter ¢ € [3, 6]

\

\

256 training examples; batch size 64

\

8 nodes of Stampede2 (8 processes-per-node)

\

2200 epochs until convergence (32hrs); Adam optimizer

FEM solver DiffNet inference
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High-resolution DiffNet (cont’d)

DiffNet on 512 X 512 domain size:

- Larger distribution of initial conditions ¢ € [3,16]

- 256 training examples; batch size 64

= DeepFusion
FEM, space-time

- 8 mnodes of Stampede2 (8 processes-per-node) - - - FDM, e marching

- 4000 epochs until convergence (15hrs); Adam optimizer SR

FEM solver

DiffNet inference

rochet



Second-order optimizer

Large-scale parallelism afforded by DeepFusion enables large batch sizes
- Higher-order optimization methods like L-BFGS benefit from large batches
- Larger memory required to evaluate the Hessian is gracefully accommodated by DeepFusion
- Training converges 2-3x faster (15x fewer epochs) than SGD

~——— BS=8 —— BS=16

—— BS=32 BS=64
SGD
50 100 200 250 300 500 1,000 1,500 2,000 2,500
time (sec)
L-BFGS

1,000 2,000 3,0(,)( )
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Conclusions and future work

- Proposed DiffNet, a data-free neural-network-based strategy to solve PDEs:
e Applied to the solution of the inviscid Burgers’ PDE with a parametric family of ICs

- Introduced DeepFusion, a software framework to train very large neural networks:
e Proposed distributed training on CPU clusters to overcome GPU memory limitations
e Demonstrated excellent scaling and accuracy on cloud-based and bare-metal infrastructures
e Showed how 2nd-order optimizers can further improve convergence and training time

- Future work: - Acknowledgements:
e Other 3D PDEs (Navier-Stokes, wave egs.) e Support from NSF XSEDE
e Alternative loss functions (e.g. weighted losses) e ARPA-E DIFFERENTIATE program

e Model-parallel strategy
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Questions
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BACKUP
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DiffNet inference time

- Inference time is often very fast:

- From practitioner perspective, time-to-solve is the time for inference
- Training cost is large, but amortized over multiple users and instances

FEM (seconds) | DeepFusion (seconds)
Si>ez | m2 | 36 ]

1024 1024 956 | 98 |

DiffNet inference time vs. FEM solve time on single node
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Effect of weighted loss function

e  Poisson equation with variable
diffusivity

output Numerical pointwise
input (diffusivity v) (solution u) solution difference

V- (#(x)Vu)=0in D
u0,y)=1

u(l,y)=0
du

I = (0 on other boundaries
n

° Loss function

7|Vu|*dx
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Effect of weighted loss function

e  Reaction diffusion equation input (forcing)

-V - (v(x)Vu)+x*u = finD

uloo =0

° Loss function

R = / [leul2 + x2u? - fu] dx
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output
(solution u)

Numerical
solution

pointwise
difference
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