Deep Generative Models that
Solve PDEs

Distributed Computing for Training Large Data-Free Models

Sergio Botelho!, Ameya Joshi’, Biswajit Khara?, Vinay Rao', Soumik Sarkar?,
Chinmay Hegde’, Santi Adavani', Baskar Ganapathysubramanian®

1 2 3 ’>
nocleet: AL NYU© 19 €C20

Solving PDEs with deep learning

o MN(x;u, {Du}; s(m))=0in (x,0) € D x Q - ° Analytical: u = f(x;m)
o AB(x,m,u)=0o0nxedDx0 e Discrete: U= F (x:0)

- Numerical methods

- Finding the “closest” function
- Discretize [1 Calc derivatives [| (optional) Integrate [Linear algebra problem: Ax=Db [Solve

- Machine learning
- Finding an approximate function / mapping
- Setup an objective function: min_||Ax - b||P [Optimize

- Stochastic PDE

- Design

- Simulations can take very long time even on modern day supercomputers

- Can we leverage the machine learning advances to speed up the process of solving PDEs on
supercomputers?

&
nochet: Envu ¥ sc20 5

Deep learning constrained by physical laws

- Conventional applications of deep learning
- Reliance on abundance of data
- Lack of generalizability
- Application to areas where a physical law needs to be respected

- Integrate physical law with the model
- PDE residual models the loss function

nochet NYU 'SC20

Formulation approaches

- PDE instance

e MN(x;u,[Dul;s)=0inxeD
e Bk, u)=0onxedD

- Pointwise predictions

(x,y,t) — EIE)

Input Output
(x.y)

"OCM [OWA STATE
UNIVERSITY

- PDE family solvers

o MN(xu, [Dul;s(n))=0in (x,0) e D xQ
e B(x,m,u)=00nxeadDx.Q

- Full-field predictions

| _»I

Input

[s]

Nx X Ny

NYU

—_—
—_—
—_—

G
—
—_—
—
—_—

U

Output

Nx X Ny

' SC20

4

This work - DiffNet

INx} [Nx x Ny]

- We attempt to solve a family of parametric PDEs

- A stochastic Burgers’ equation:
- u+uu =0in (x,t) in [0,11%[0,%]
- Boundary condition: u(x=0, t) =0
- Initial condition: u(x, t=0) = % (1 - cos 2ncx)

- Learned model:
IC—> Gy — U ° E

- Multiscale problems demand high resolution, locally a
or globally =

- A full field approach, especially when aiming for
space-time problems can be demanding in memory
consumption

JOWA STATE
I‘O’CM UNIVERSITY @l NYU

DiffNet problem formulation

Solving PDE = training a 2D convolutional generative neural network G,

-

Input: initial condition u(x, 0)
Output: full-field solution u(x, t)

q . . ey [Convolutional Layer
Loss function: PDE residual + initial/boundary _ 27 u(x,n)
[1 Residual Block with
conditions 2x2 upsampling

, | Dense Layer

L =L, + ALy,
Lp(0) = Ep,[[A (Go(b,v)) — fII3],

Residual
Block with upsampling

. ® Variable no. of
‘ | 12 X, Upsampling blocks
‘BN: 42 { _]

Ly(9) = Eb| B(Go(b,v)) — bl|3].

nochet: Envu ¥ €C20

Implementation of forward model

- k'™ order derivatives approximated by convolutions with finite-difference kernels:

V]fx,t) ~ /U,(Qj, t) * Sé{;ﬁ,t)

- For 1** order derivatives, we use 3 x 3 Sobel kernels:

—2 —10 =3 -3 0 3
Sl=10 0 0| , S'=]|-100 10
3 10 3 -3 0 3

&
nochet: NYU 1 sc20

Challenges of training on GPUs

- GPUs are the most popular compute platform for training DNNs
- Known limitation: they have relatively small available memory

- Training is usually done with very small mini-batches, which hinders convergence
- Worse yet, often times training is done on single GPU, impacting productivity

- Training DiffNet on domain sizes > 512 x 512 is not feasible on current GPUsl!

& 512x512
1024x1024 4

Tesla V100

Tesla RTX 6000

o
)
g
<)
S
@
£
v
©
3]
o

128x128
64x64

©sc20

Introducing DeepFusion

Platform-agnostic software framework for large-scale distributed deep-learning:
- Extends memory capacity way beyond GPU limits while delivering excellent strong scaling

- Strategy: distributed training of DiffNet on CPU clusters
- 5-10x more memory-per-node compared to GPUs
- Multiple cores-per-node connected via high-end low-latency interconnects
- Substantially cheaper price tag per node

No Stampede?
64x64 131.0 | 113.1
et | -

64x64

Virtua Virtua
ntel Xeon ntel Xeon ntel Xeon
Platinum 000 Platinum 160

Pl | | a4

128x128
256x256

astic EDR nte P h wall-clock ti
Interconnect Fabric Adapter Infiniband Omni-Path er-epoch wall-clock tines

Banidvadih 100 Gb/sec 100 Gb/sec 100 Gb/sec (Batch size 1024; 4 processes per node, 8 threads per process)
Topology | AWS Proprietary

Memory (GE)

Specification Stampede2

E

NYU ¥ €C20

DeepFusion: programming paradigm

- Uses hybrid OpenMP + MPI programming for efficient intra/inter-node communication
- Designed with parallelization in mind (“scaling as a first-class citizen”)

- Leverages Intel MKL-DNN for fast forward/backward propagation

l
in

|

Host shared memory

r.
=
o

|
(ll

Interconnection network

&
nochet: ¢« NG, ¥ec20 10

DeepFusion: data-parallel strategy

Multiple replicas of model are simultaneously trained to optimize a single objective

function:

- Mini-batches are equally split among available workers

- Forward & back-propagation are performed asynchronously; gradients are MPI_AlIReduce’d

Training data

"O'OM [OWA STATE
UNIVERSITY

¥ 520

11

Data-parallel strategy (cont’d)

Solution robustness to parallelization: same problem is solved for any p

- Local mini-batches are drawn sequentially from sample pool by each worker

- Equal-size mini-batches across workers guarantees optimal load-balancing

N = [Ny/p], by = [bs/p]

Ny total samples —— 0>

global batch 1 global batch 2 global batch N,

"O'CM [OWA STATE
UNIVERSITY

NYU

Loss vs. Epoch for different p

(DiffNet training on 256 x 256 domain size)

©sc20

12

Scaling experiments

DiffNet training on 1 - 128 nodes (8 - 1024 processes) of Stampede2

- 8 processes per node, 12 threads per process (on 96 available hardware threads)
- Batch size 1024 (4096 training examples)

256 x 256

)
7]
£
=
o
2
5
a
£
S
(V]

Communication time(s)

—
%)
o
]
0

-
2]

£

=

M=
[5]
o
Q.

w

128x128 —@—
256x256 ——
Ideal

128 256 512 1024
Processes

8 16 Communication complexity = O(N,, + log p), Ny, > p.

#nodes

nochet: NYU ' SC20 13

High-resolution DiffNet

DiffNet on 1024 X 1024 domain size (not previously done for such generative models):
Trained for a range of the initial condition parameter ¢ € [3, 6]

\

\

256 training examples; batch size 64

\

8 nodes of Stampede2 (8 processes-per-node)

\

2200 epochs until convergence (32hrs); Adam optimizer

FEM solver DiffNet inference

1
09
08
0.7
0.6
05
04
0.3
Q.2
01

0

"O'CM [OWA STATE
UNIVERSITY

High-resolution DiffNet (cont’d)

DiffNet on 512 X 512 domain size:

- Larger distribution of initial conditions ¢ € [3,16]

- 256 training examples; batch size 64

= DeepFusion
FEM, space-time

- 8 mnodes of Stampede2 (8 processes-per-node) - - - FDM, e marching

- 4000 epochs until convergence (15hrs); Adam optimizer SR

FEM solver

DiffNet inference

rochet

Second-order optimizer

Large-scale parallelism afforded by DeepFusion enables large batch sizes
- Higher-order optimization methods like L-BFGS benefit from large batches
- Larger memory required to evaluate the Hessian is gracefully accommodated by DeepFusion
- Training converges 2-3x faster (15x fewer epochs) than SGD

~——— BS=8 —— BS=16

—— BS=32 BS=64
SGD
50 100 200 250 300 500 1,000 1,500 2,000 2,500
time (sec)
L-BFGS

1,000 2,000 3,0(,)()

"O'CM time (sec) 16

Conclusions and future work

- Proposed DiffNet, a data-free neural-network-based strategy to solve PDEs:
e Applied to the solution of the inviscid Burgers’ PDE with a parametric family of ICs

- Introduced DeepFusion, a software framework to train very large neural networks:
e Proposed distributed training on CPU clusters to overcome GPU memory limitations
e Demonstrated excellent scaling and accuracy on cloud-based and bare-metal infrastructures
e Showed how 2nd-order optimizers can further improve convergence and training time

- Future work: - Acknowledgements:
e Other 3D PDEs (Navier-Stokes, wave egs.) e Support from NSF XSEDE
e Alternative loss functions (e.g. weighted losses) e ARPA-E DIFFERENTIATE program

e Model-parallel strategy

&
nochet NYU ¥ sc20

17

Questions

[OWA STATE
UNIVERSITY

NYU

©sc20

18

BACKUP

NYU ¥eEe20 1

DiffNet inference time

- Inference time is often very fast:

- From practitioner perspective, time-to-solve is the time for inference
- Training cost is large, but amortized over multiple users and instances

FEM (seconds) | DeepFusion (seconds)
Si>ez | m2 | 36]

1024 1024 956 | 98 |

DiffNet inference time vs. FEM solve time on single node

[OWA STATE
FO'CM UNIVERSITY @ NYU

© 20

20

Effect of weighted loss function

e Poisson equation with variable
diffusivity

output Numerical pointwise
input (diffusivity v) (solution u) solution difference

V- (#(x)Vu)=0in D
u0,y)=1

u(l,y)=0
du

I = (0 on other boundaries
n

° Loss function

7|Vu|*dx

nochet: NYU 17 sC20 o1

Effect of weighted loss function

e Reaction diffusion equation input (forcing)

-V - (v(x)Vu)+x*u = finD

uloo =0

° Loss function

R = / [leul2 + x2u? - fu] dx

"O'CM [OWA STATE
UNIVERSITY

output
(solution u)

Numerical
solution

pointwise
difference

7 sc20

22

