
1 2 3

Deep Generative Models that
Solve PDEs

Distributed Computing for Training Large Data-Free Models

Sergio Botelho

1

, Ameya Joshi

3

, Biswajit Khara

2

, Vinay Rao

1

, Soumik Sarkar

2

,

Chinmay Hegde

3

, Santi Adavani

1

, Baskar Ganapathysubramanian

2

Solving PDEs with deep learning

- Numerical methods

- Finding the “closest” function

- Discretize 🠆 Calc derivatives 🠆 (optional) Integrate 🠆 Linear algebra problem: Ax = b 🠆 Solve

- Machine learning

- Finding an approximate function / mapping

- Setup an objective function: min

x

 ||Ax - b||

p

 🠆 Optimize

- Stochastic PDE

- Design

- Simulations can take very long time even on modern day supercomputers

- Can we leverage the machine learning advances to speed up the process of solving PDEs on

supercomputers?

● 𝓝(x; u, {𝓓u}; s(ω)) = 0 in (x,ω) ϵ D × 𝛺
● ℬ(x, ω, u) = 0 on x ϵ 𝜕D × 𝛺

● Analytical: u = f(x;ω)
● Discrete: U = FD(x;ω)

2

Deep learning constrained by physical laws

- Conventional applications of deep learning

- Reliance on abundance of data

- Lack of generalizability

- Application to areas where a physical law needs to be respected

- Integrate physical law with the model

- PDE residual models the loss function

3

Formulation approaches

- Pointwise predictions

(x, y, t) f

NN

([s])
u [s]

I

G

NN

U

I

- PDE instance

● 𝓝(x; u, {𝓓u}; s) = 0 in x ϵ D

● ℬ(x, u) = 0 on x ϵ 𝜕D

● 𝓝(x; u, {𝓓u}; s(ω)) = 0 in (x,ω) ϵ D × 𝛺
● ℬ(x, ω, u) = 0 on x ϵ 𝜕D × 𝛺

- PDE family solvers

- Full-field predictions

4

[s]

Nx × Ny

Input OutputG

U

Nx × Ny

×

u 𝜖 ℝ

Input OutputG

(x,y)

This work - DiffNet
- We attempt to solve a family of parametric PDEs

- A stochastic Burgers’ equation:

- u

t

 + uu

x

 = 0 in (x,t) in [0,1]×[0,⅕]

- Boundary condition: u(x=0, t) = 0

- Initial condition: u(x, t=0) = ½ (1 - cos 2πcx)

- Learned model:

- IC → G

NN

 → U

- Multiscale problems demand high resolution, locally

or globally

- A full field approach, especially when aiming for

space-time problems can be demanding in memory

consumption

G

G

G

5

Input size

{Nx}

Output size

[Nx × Ny]

c=3

c=5

c=10

DiffNet problem formulation
Solving PDE ⇒ training a 2D convolutional generative neural network Gθ
- Input: initial condition u(x, 0)

- Output: full-field solution u(x, t)

- Loss function: PDE residual + initial/boundary

conditions

PDE:

6

Implementation of forward model
- k

th

 order derivatives approximated by convolutions with finite-difference kernels:

- For 1

st

 order derivatives, we use 3 ✕ 3 Sobel kernels:

7

Challenges of training on GPUs
- GPUs are the most popular compute platform for training DNNs

- Known limitation: they have relatively small available memory

- Training is usually done with very small mini-batches, which hinders convergence

- Worse yet, often times training is done on single GPU, impacting productivity

- Training DiffNet on domain sizes > 512 ✕ 512 is not feasible on current GPUs!

Tesla V100

Tesla RTX 6000

8

Introducing DeepFusion
Platform-agnostic software framework for large-scale distributed deep-learning:

- Extends memory capacity way beyond GPU limits while delivering excellent strong scaling

- Strategy: distributed training of DiffNet on CPU clusters

- 5-10x more memory-per-node compared to GPUs

- Multiple cores-per-node connected via high-end low-latency interconnects

- Substantially cheaper price tag per node

Per-epoch wall-clock times

(Batch size 1024; 4 processes per node, 8 threads per process)

9

DeepFusion: programming paradigm
- Uses hybrid OpenMP + MPI programming for efficient intra/inter-node communication

- Designed with parallelization in mind (“scaling as a first-class citizen”)

- Leverages Intel MKL-DNN for fast forward/backward propagation

MPI

10

DeepFusion: data-parallel strategy
Multiple replicas of model are simultaneously trained to optimize a single objective

function:

- Mini-batches are equally split among available workers

- Forward & back-propagation are performed asynchronously; gradients are MPI_AllReduce’d

11

Data-parallel strategy (cont’d)
Solution robustness to parallelization: same problem is solved for any p

- Local mini-batches are drawn sequentially from sample pool by each worker

- Equal-size mini-batches across workers guarantees optimal load-balancing

(DiffNet training on 256 ✕ 256 domain size)

12

Scaling experiments
DiffNet training on 1 - 128 nodes (8 - 1024 processes) of Stampede2

- 8 processes per node, 12 threads per process (on 96 available hardware threads)

- Batch size 1024 (4096 training examples)

256 ✕ 256

Communication complexity =

13

High-resolution DiffNet
DiffNet on 1024 ✕ 1024 domain size (not previously done for such generative models):

- Trained for a range of the initial condition parameter c ∈ [3, 6]

- 256 training examples; batch size 64

- 8 nodes of Stampede2 (8 processes-per-node)

- 2200 epochs until convergence (32hrs); Adam optimizer

FEM solver DiffNet inference

14

High-resolution DiffNet (cont’d)
DiffNet on 512 ✕ 512 domain size:

- Larger distribution of initial conditions c ∈ [3, 16]

- 256 training examples; batch size 64

- 8 nodes of Stampede2 (8 processes-per-node)

- 4000 epochs until convergence (15hrs); Adam optimizer

FEM solver

DiffNet inference

 c = 3 c = 5 c = 10 c = 13

15

Second-order optimizer
Large-scale parallelism afforded by DeepFusion enables large batch sizes

- Higher-order optimization methods like L-BFGS benefit from large batches

- Larger memory required to evaluate the Hessian is gracefully accommodated by DeepFusion

- Training converges 2-3✕ faster (15✕ fewer epochs) than SGD

SGD

L-BFGS

16

Conclusions and future work
- Proposed DiffNet, a data-free neural-network-based strategy to solve PDEs:

● Applied to the solution of the inviscid Burgers’ PDE with a parametric family of ICs

- Introduced DeepFusion, a software framework to train very large neural networks:

● Proposed distributed training on CPU clusters to overcome GPU memory limitations

● Demonstrated excellent scaling and accuracy on cloud-based and bare-metal infrastructures

● Showed how 2nd-order optimizers can further improve convergence and training time

17

- Future work:

● Other 3D PDEs (Navier-Stokes, wave eqs.)

● Alternative loss functions (e.g. weighted losses)

● Model-parallel strategy

- Acknowledgements:

● Support from NSF XSEDE

● ARPA-E DIFFERENTIATE program

Questions

18

BACKUP

19

DiffNet inference time
- Inference time is often very fast:

- From practitioner perspective, time-to-solve is the time for inference

- Training cost is large, but amortized over multiple users and instances

20

DiffNet inference time vs. FEM solve time on single node

Effect of weighted loss function

21

x = 0.2 x = 0.5 x = 0.8 y = 0.2 y = 0.5 y = 0.8

input (diffusivity 𝜈)
output

(solution u)
Numerical
solution

pointwise
difference

● Poisson equation with variable
diffusivity

● Loss function

Effect of weighted loss function

22

x = 0.2 x = 0.5 x = 0.8 y = 0.2 y = 0.5 y = 0.8

input (forcing)
output

(solution u)
Numerical
solution

pointwise
difference● Reaction diffusion equation

● Loss function

