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• Unprecedented growth in data generated from diverse sources

• Machine Learning (ML) libraries, tools, and techniques: 
processing and extracting useful information from this data

• Scikit-learn and Apache Spark’s MLlib: natively designed to 
support the execution of ML algorithms on CPUs.

• GPUs: 
– Popular platform for optimizing parallel workloads

– Match for ML applications, which require high arithmetic intensity

Introduction
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• RAPIDS AI: enables end-to-end data science analytic 
pipelines entirely on GPUs.

• cuML
– GPU-accelerated ML library

– GPU-counterpart of Scikit-learn

– Supports the execution of ML workloads on Multi-Node Multi-
GPUs (MNMG) systems

Introduction (cont.)
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• Communication stages in cuML:
– The training data is distributed to all workers

– The output of the training stage i.e. the model parameters are 
shared with all workers

• Communication Support in cuML:
– Point-to-point communication: Dask

– Collective communication: NVIDIA Collective Communications 
Library (NCCL)

Motivation
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Motivation: Combine Ease-of-use with High-performance
Libraries GPU 

Support
MNMG 
Support

Python 
Support

High 
Performance

Scikit-learn

Spark’s MLlib

Mahout

PAPIDS cuML

MPI

Our paper

How can we combine the ease-of-use provided by cuML for running ML 
applications with the high-performance provided by MPI?
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Motivation: Support MPI-based Collectives in cuML
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How can we replace NCCL-based collective communications in cuML with MPI-based 
communications to take advantage of efficient and GPU-aware collective 

communication designs in MVAPICH2-GDR?

AllreduceReduce Bcast

• MVAPICH2-GDR: Support efficient communication between GPU devices
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• Training based on different ML algorithms:
– K-Means

– tSVD

– Random Forest

– Linear Regression

• Understand cuML to achieve the best performance
– being a relatively new ML library

– not studied well by the community

Motivation: Performance Characterization for cuML Algorithms

How can we provide performance characterization for GPU-accelerated cuML Algorithms 
and provide guidelines for data scientists to take the most advantage of them?
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RAPIDS Software Stack

APACHE ARROW

CUDA

RAPIDS
cuDF cuML cuGraphs

Python

• Built on top of CUDA

• Under the standard specification of Apache Arrow

• Three main components
– cuDF: data-frame manipulation library

– cuML: Machine Library library

– cuGraphs: accelerated graph analytics library
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cuML Components

Primitives Element-wise
operations

Matrix 
multiplication

Eigen 
Decomposition

standard 
deviation

distance/matrix 
calculations

Algorithms Linear 
regression

Logistic 
regression

K-nearest 
neighbors K-means

Random 
forest

Python
Scikit-learn-like interfaces

• Three main components
– Primitives

• Reusable building blocks for building machine learning algorithms

• Common for different machine learning algorithms

• Used to build different machine learning algorithms

– Machine learning Algorithms

– Python layer
• Provides a Scikit-learn like interface

• Hides the complexities of the C/C++ layer
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cuML Software Stack

Python

Cython

cuML Primitives

CUDA Libraries

CUDA

cuML Algorithms

CUDA/C++

• Software stack of cuML in a system with single GPU

• Primitives and cuML algorithms built on top of CUDA

• The CUDA/C++ layer is wrapped to the Cython layer to expose 
the cuML algorithms
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cuML Software Stack in Distributed Setting

Python

Cython

cuML Primitives

CUDA Libraries

CUDA

cuML Algorithms

CUDA/C/C++

UCX

Dask

NCCL

• Two components are added:
– Dask: for handling point-to-point communications

– NCCL: for handling collective communications



Network Based Computing Laboratory 15SC’20

Cluster

Client

Scheduler

Worker WorkerWorker
cuMLHandle cuMLHandle

0 1 2

Dask/UCX
NCCL

cuMLHandle

NCCL Communicator

cuMLHandle

Dask and NCCL Communication Paths in cuML

inject_nccl
_comms_py()cumlHandle

NCCL Communicator

cumlHandle
with NCCL 

communicator
Attached

Fit()

• A NCCL communicator is created across the worker processes
• cumlHandle: A class in cuML that is used to manage resources
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MPI-Based Communication Support in cuML

Python

Cython

cuML Primitives

CUDA Libraries

CUDA

cuML Algorithms

CUDA/C/C++

UCX

Dask

MVAPICH2-GDR

MPI4PY

• MVAPICH2-GDR: for handling collective communications
• MPI4PY: Python binding library for MPI
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MPI-Based Communication Support in cuML

MPI4PY

cumlHandle

initialize_mpi
_comms()

MPI_plugin.pyx

import

cdef
extern

cdef
extern

Setup.py

MVAPICH2
-GDR

CUML

CUDA 
Llibraries

MPI_plugin.so

Defines inject_mpi_comms_py()

• Use a Cython wrapper to inject MPI communicator to cuML handle
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Experimental Setup

Specification SDSC Comet

Number of Nodes 36

Processor Family Xeon Haswell

Processor Model E5-2680 v3

Clock Speed 2.5 GHz

Sockets 2

Cores per Socket 12

RAM (DDR4) 128 GB

GPU Family NVIDIA Pascal P100

GPUs 4

GPU Memory 16 GB (HBM2)

Interconnect IB-EDR (56G)
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Performance Results

CPU vs. GPU
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Performance Results
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Performance Results

Linear Regression Random Forest
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1.25x speedup on 32 GPUs 1.1x speedup for 16 GPUs
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Performance Results

Nearest Neighbors
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Collectives in cuML Algorithms
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• K-Means: Allreduce
• Nearest neighbor: Bcast and Reduce
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Accuracy
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K-Means Random Forest

• Hyperparameter optimization (HPO) to the real-world Higgs dataset
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• Add support for MPI-based communications for cuML applications in Python

• Take advantage of MPI collective communication for communication 
between workers in cuML

• Provide a synthetic benchmarking suite and in-depth analysis of cuML
algorithms

• Compare the performance of the proposed MPI-based communication 
approach with NCCL-based communication design

• Up to 1.6x, 1.25x, 1.25x,and 1.36x speedup for K-Means, Nearest Neighbors, 
Linear Regression, and tSVD on 32 GPUs

• Will be available to the community

Conclusion
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Thank You!

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

The High-Performance MPI/PGAS Project
http://mvapich.cse.ohio-state.edu/

The High-Performance Deep Learning Project
http://hidl.cse.ohio-state.edu/

The High-Performance Big Data Project
http://hibd.cse.ohio-state.edu/

ghazimirsaeed.3@osu.edu

http://nowlab.cse.ohio-state.edu/

