Accelerating GPU-based Machine Learning in Python using MPI Library: A Case Study with MVAPICH2-GDR

S. Mahdieh Ghazimirsaeed, Quentin Anthony, Aamir Shafi,

Hari Subramoni and Dhabaleswar K. (DK) Panda

Network Based Computing Laboratory

The Ohio State University
{ghazimirsaeed.3, anthony.301, shafi.16, subramoni.1, panda.2}@osu.edu

- Introduction
- Motivation
- Overview of the Software Stacks
- MPI-Based Communication Support in cuML
- Performance Evaluation and Characterization
- Conclusion

Introduction

- Unprecedented growth in data generated from diverse sources
- Machine Learning (ML) libraries, tools, and techniques:
 processing and extracting useful information from this data
- Scikit-learn and Apache Spark's MLlib: natively designed to support the execution of ML algorithms on CPUs.

GPUs:

- Popular platform for optimizing parallel workloads
- Match for ML applications, which require high arithmetic intensity

Introduction (cont.)

 RAPIDS AI: enables end-to-end data science analytic pipelines entirely on GPUs.

cuML

- GPU-accelerated ML library
- GPU-counterpart of Scikit-learn
- Supports the execution of ML workloads on Multi-Node Multi-GPUs (MNMG) systems

- Introduction
- Motivation
- Overview of the Software Stacks
- MPI-Based Communication Support in cuML
- Performance Evaluation and Characterization
- Conclusion

Motivation

- Communication stages in cuML:
 - The training data is distributed to all workers
 - The output of the training stage i.e. the model parameters are shared with all workers
- Communication Support in cuML:
 - Point-to-point communication: Dask
 - Collective communication: NVIDIA Collective Communications
 Library (NCCL)

Motivation: Combine Ease-of-use with High-performance

Libraries	GPU Support	MNMG Support	Python Support	High Performance
Scikit-learn	*	*	✓	*
Spark's MLlib	*			*
Mahout		/	*	*
PAPIDS cuML				*
MPI			*	✓
Our paper				

How can we combine the ease-of-use provided by cuML for running ML applications with the high-performance provided by MPI?

Motivation: Support MPI-based Collectives in cuML

MVAPICH2-GDR: Support efficient communication between GPU devices

How can we replace NCCL-based collective communications in cuML with MPI-based communications to take advantage of efficient and GPU-aware collective communication designs in MVAPICH2-GDR?

Motivation: Performance Characterization for cuML Algorithms

- Training based on different ML algorithms:
 - K-Means
 - tSVD
 - Random Forest
 - Linear Regression
- Understand cuML to achieve the best performance
 - being a relatively new ML library
 - not studied well by the community

How can we provide performance characterization for GPU-accelerated cuML Algorithms and provide guidelines for data scientists to take the most advantage of them?

- Introduction
- Motivation
- Overview of the Software Stacks
- MPI-Based Communication Support in cuML
- Performance Evaluation and Characterization
- Conclusion and Future Work

RAPIDS Software Stack

- Built on top of CUDA
- Under the standard specification of Apache Arrow
- Three main components
 - cuDF: data-frame manipulation library
 - cuML: Machine Library library
 - cuGraphs: accelerated graph analytics library

cuML Components

Three main components

- Primitives
 - Reusable building blocks for building machine learning algorithms
 - Common for different machine learning algorithms
 - Used to build different machine learning algorithms
- Machine learning Algorithms
- Python layer
 - Provides a Scikit-learn like interface
 - Hides the complexities of the C/C++ layer

cuML Software Stack

- Software stack of cuML in a system with single GPU
- Primitives and cuML algorithms built on top of CUDA
- The CUDA/C++ layer is wrapped to the Cython layer to expose

the cuML algorithms

cuML Software Stack in Distributed Setting

- Two components are added:
 - Dask: for handling point-to-point communications
 - NCCL: for handling collective communications

Dask and NCCL Communication Paths in cuML

- A NCCL communicator is created across the worker processes
- cumlHandle: A class in cuML that is used to manage resources

- Introduction
- Motivation
- Overview of the Software Stacks
- MPI-Based Communication Support in cuML
- Performance Evaluation and Characterization
- Conclusion

MPI-Based Communication Support in cuML

- MVAPICH2-GDR: for handling collective communications
- MPI4PY: Python binding library for MPI

MPI-Based Communication Support in cuML

Use a Cython wrapper to inject MPI communicator to cuML handle

- Introduction
- Motivation
- cuML Software Stack
- MPI-Based Communication Support in cuML
- Performance Evaluation and Characterization
- Conclusion and Future Work

Experimental Setup

Specification	SDSC Comet	
Number of Nodes	36	
Processor Family	Xeon Haswell	
Processor Model	E5-2680 v3	
Clock Speed	2.5 GHz	
Sockets	2	
Cores per Socket	12	
RAM (DDR4)	128 GB	
GPU Family	NVIDIA Pascal P100	
GPUs	4	
GPU Memory	16 GB (HBM2)	
Interconnect	IB-EDR (56G)	

CPU vs. GPU

1.38x speedup on 32 GPUs

Truncated SVD

1.6x speedup for 32 GPUs

K-Means

1.25x speedup on 32 GPUs

1.1x speedup for 16 GPUs

Linear Regression

Random Forest

1.24x speedup on 32 GPUs

Nearest Neighbors

Collectives in cuML Algorithms

- K-Means: Allreduce
- Nearest neighbor: Bcast and Reduce

Message Size (bytes)

Accuracy

Hyperparameter optimization (HPO) to the real-world Higgs dataset

K-Means

Random Forest

- Introduction
- Motivation
- Overview of the Software Stacks
- MPI-Based Communication Support in cuML
- Performance Evaluation and Characterization
- Conclusion

Conclusion

- Add support for MPI-based communications for cuML applications in Python
- Take advantage of MPI collective communication for communication between workers in cuML
- Provide a synthetic benchmarking suite and in-depth analysis of cuML algorithms
- Compare the performance of the proposed MPI-based communication approach with NCCL-based communication design
- Up to 1.6x, 1.25x, 1.25x, and 1.36x speedup for K-Means, Nearest Neighbors,
 Linear Regression, and tSVD on 32 GPUs
- Will be available to the community

Thank You!

ghazimirsaeed.3@osu.edu

Network-Based Computing Laboratory

http://nowlab.cse.ohio-state.edu/

The High-Performance MPI/PGAS Project http://mvapich.cse.ohio-state.edu/

The High-Performance Big Data Project http://hibd.cse.ohio-state.edu/

The High-Performance Deep Learning Project http://hidl.cse.ohio-state.edu/