Accelerating GPU-based Machine Learning in
Python using MPI Library: A Case Study with
MVAPICH2-GDR

S. Mahdieh Ghazimirsaeed, Quentin Anthony, Aamir Shafi,

Hari Subramoni and Dhabaleswar K. (DK) Panda

Network Based Computing Laboratory
The Ohio State University
{ghazimirsaeed.3, anthony.301, shafi.16, subramoni.1,

O panda.2}@osu.edu

THE OHIO STATE
UNIVERSITY

Outline

e |ntroduction

e Motivation

e QOverview of the Software Stacks

e MPI-Based Communication Support in cuML

e Performance Evaluation and Characterization

e Conclusion

Introduction

e Unprecedented growth in data generated from diverse sources

e Machine Learning (ML) libraries, tools, and techniques:
processing and extracting useful information from this data

e Scikit-learn and Apache Spark’s MLIlib: natively designed to
support the execution of ML algorithms on CPUs.

e GPUs:

— Popular platform for optimizing parallel workloads

— Match for ML applications, which require high arithmetic intensity

Introduction (cont.)

e RAPIDS Al: enables end-to-end data science analytic
pipelines entirely on GPUs.

e cuML
— GPU-accelerated ML library

— GPU-counterpart of Scikit-learn

— Supports the execution of ML workloads on Multi-Node Multi-
GPUs (MNMG) systems

Outline

e |ntroduction

e Motivation

e QOverview of the Software Stacks

e MPI-Based Communication Support in cuML

e Performance Evaluation and Characterization

e Conclusion

Motivation

e Communication stages in cuML:
— The training data is distributed to all workers

— The output of the training stage i.e. the model parameters are
shared with all workers

e Communication Support in cuML:

— Point-to-point communication: Dask

— Collective communication: NVIDIA Collective Communications
Library (NCCL)

Motivation: Combine Ease-of-use with High-performance

Scikit-learn b 4 v 4
Spark’s MLlib o2 v 4
Mahout v 4) 4
PAPIDS cuML v v 4
MP v ®

Our paper [J

How can we combine the ease-of-use provided by cuML for running ML
applications with the high-performance provided by MPI?

Motivation: Support MPI-based Collectives in cuML

« MVAPICH2-GDR: Support efficient communication between GPU devices

25
oNCCL =MVAPICH2-GDR 20 oNCCL mMVAPICH2-GDR 40 oNCCL mMVAPICH2-GDR

18
35

Latency (s)

0
4 8 16 32 64 128 256 512 1K 2K 4K 8K 16K 4 8 16 32 64 128 256 512 1K 2K 4K 8K 16K 4 8 16 32 64 128 256 512 1K 2K 4K 8K 16K
Message Size (bytes) Message Size (bytes) Message Size (bytes)

Reduce Bcast Allreduce

How can we replace NCCL-based collective communications in cuML with MPI-based
communications to take advantage of efficient and GPU-aware collective
communication designs in MVAPICH2-GDR?

Motivation: Performance Characterization for cuML Algorithms

e Training based on different ML algorithms:

— K-Means
— tSVD
— Random Forest

— Linear Regression

e Understand cuML to achieve the best performance

— being a relatively new ML library

— not studied well by the community

How can we provide performance characterization for GPU-accelerated cuML Algorithms
and provide guidelines for data scientists to take the most advantage of them?

Outline

e |ntroduction

e Motivation

e QOverview of the Software Stacks

e MPI-Based Communication Support in cuML

e Performance Evaluation and Characterization

e Conclusion and Future Work

RAPIDS Software Stack

e Built on top of CUDA
e Under the standard specification of Apache Arrow

e Three main components
— cuDF: data-frame manipulation library

— cuML: Machine Library library Python
— cuGraphs: accelerated graph analytics library

RAPIDS

Network Based Computing Laborator SC’20 11

cuML Components

e Three main components

— Primitives
e Reusable building blocks for building machine learning algorithms

e Common for different machine learning algorithms

e Used to build different machine learning algorithms
uild di i ing algori Python

— Machine learning Algorithms [scikitlearn-ike interfaces]

- Python Iayer Algorithms [Linear J [Logistic J

. . . . regression regression
e Provides a Scikit-learn like interface g g

e Hides the complexities of the C/C++ layer neighbors RTEES forest

Primitives Element-wise Matrix
operations multiplication

Eigen standard distance/matrix
Decomposition deviation calculations

cuML Software Stack

e Software stack of cuML in a system with single GPU
e Primitives and cuML algorithms built on top of CUDA

e The CUDA/C++ layer is wrapped to the Cython layer to expose
the cuML algorithms Python

Cython

cuML Algorithms

CUDA Libraries

cuML Software Stack in Distributed Setting

e Two components are added:

— Dask: for handling point-to-point communications

. . N Dask Python
— NCCL: for handling collective communications

cuML Algorithms

A Libraries

Network Based Computing Laborator 14

Dask and NCCL Communication Paths in cuML

* A NCCL communicator is created across the worker processes
 cumlHandle: A class in cuML that is used to manage resources

Client
<+« — —» Dask/UCX 7
<«——— NCCL /’
7
Cluster >
Scheduler
o
3 VAR | So
“‘\ /'/ 7 1 S
; /’/ // 1 S ~
e 7 ~
\ pd / v’ Sa
’
cuMLHandle Vs cuMLHandle cuMLHandle
- = - >
Worker Worker Worker
t
1 |
I L

cumlHandle =—p

inject_nccl
_comms_py()

f

NCCL Communicato

Fit()

cumlHandle
» with NCCL
communicator
Attached

|

Outline

e |ntroduction

e Motivation

e QOverview of the Software Stacks

e MPI-Based Communication Support in cuML

e Performance Evaluation and Characterization

e Conclusion

MPI-Based Communication Support in cuML

* MVAPICH2-GDR: for handling collective communications
* MPI4PY: Python binding library for MPI

Dask Python

MPI4PY

cuML Algorithms

cuML Primitives

CUDA Libraries

CUDA

Network Based Computing Laborator 17

MPI-Based Communication Support in cuML

 Use a Cython wrapper to inject MPlI communicator to cuML handle

Defines inject_mpi_comms_py()

cumlHandle |- cdef MPI_plugin.
extern —plugin.pyx | ===

A

initialize_mpi | cdef
_comms{() extern t

MPI4PY [import

v

Setup.py

- =
CUDA

Llibraries

Outline

e |ntroduction

e Motivation

e cuML Software Stack

e MPI-Based Communication Support in cuML
e Performance Evaluation and Characterization

e Conclusion and Future Work

Network Based Computing Laborator SC’20 19

Experimental Setup

Number of Nodes 36
Processor Family Xeon Haswell
Processor Model E5-2680 v3
Clock Speed 2.5 GHz
Sockets 2
Cores per Socket 12
RAM (DDR4) 128 GB
GPU Family NVIDIA Pascal P100
GPUs 4
GPU Memory 16 GB (HBM2)
Interconnect IB-EDR (56G)

Performance Results

4500
oGPU mCPU
1010 o J S

3500
3000
2500
2000
1500 |-
1000 |-
500 -

0

Trainng Time (s)

K-Means Random Nearest tSVD Linear
Forest Neighbors Regression

CPU vs. GPU

Network Based Computing Laborator SC’20 pk|

Performance Results

1600

1400 |-
51200 |-
©1000 |-

Training Tim
N P DN
o O o O
o O o O

o

1.38x speedup on 32 GPUs

CONCCL mMVAPICH2-GDR +Speedup

Number of GPUs

Truncated SVD

Training Time (s)

1800

1600 |
1400 |
1200 |-
1000 |-
800 |-
600 |-
400 |-
200 |-

1.6x speedup for 32 GPUs

oNCCL =MVAPICH2-GDR «+Speedup

/

/

]Wm

2 4 8 16
Number of GPUs

K-Means

32

1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0

Speedup

Performance Results

2000

1800

1600
< 1400 |-
1200 |-
o 1000 |-
800 |
600 |
400 |
200 |

Time

Trainin

1.25x speedup on 32 GPUs

oNCCL =mMVAPICH2-GDR -Speedup

2 4 8 16
Number of GPUs

Linear Regression

32

1.4
1.2
1.0
0.8.%
06 o
04
0.2
0.0

Training Time (s)

250

225 |-
200 |-
175 |
150 |-
125 |
100 |
75 |
50 |
25 |

1.1x speedup for 16 GPUs

oONCCL m=mMVAPICH2-GDR 4-Speedup
1 B —
4 8 16

Number of GPUs

Random Forest

32

20
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0

Speedup

Performance Results

—~
N
~—

Training Time

1.24x speedup on 32 GPUs

2400 -
2100 -
1800 -
1500 |-
1200 -
900 |-
600 -
300 -

ONCCL mMVAPICH2-GDR <Speedup

__—

] B =
1 2 4 8 16 32
Number of GPUs

Nearest Neighbors

1.6
1.4
1.2
0s 3
" ()
06 &
04
0.2
0.0

Collectives in cuML Algorithms

o

Number of Calls
— — N N w
(6] o ()] o (6)]

o

K-Means: Allreduce

40
35

S5
>
2
§20
5
15

10

o

Nearest neighbor: Bcast and Reduce

25

oNCCL =MVAPICH2-GDR

Allvord
Afrequce

LA

4 8 16 32 64 128 256 512 1K 2K 4K 8K 16K
Message Size (bytes)

20

oNCCL =sMVAPICH2-GDR

m Allreduce in K-Means 21

~_mReduce in Nearest Neighbors 0

O Bcast in Nearest Neighbors E H M “ mm “ "

A% O b AV oD VO DO O 0 > S D 0 D VD
RARSRN R SR S - R SR R SR S S SRS R L
VoYY > W ATATLS SR QPR P @ g

Message Size (bytes)

4 8 16 32 64 128 256 512 1K 2K 4K 8K 16K
Message Size (bytes)

oNCCL mMVAPICH2-GDR

—Bcast___

L

4 8 16 32 64 128 256 512 1K 2K 4K 8K 16K
Message Size (bytes)

Accuracy

* Hyperparameter optimization (HPO) to the real-world Higgs dataset

100% 100%
[0 After HPO H Before HPO [0 After HPO MW Before HPO
80% 80%
ge0% - - B 560% - M- W
> >
S40% - M- M- Sao% - W W
20% | .- - 20% (| .-
0% 0%
1 2 4 8 16 32 1 2 4 8 16 32
Number of GPUs Number of GPUs

K-Means Random Forest

Outline

e |ntroduction

e Motivation

e QOverview of the Software Stacks

e MPI-Based Communication Support in cuML
e Performance Evaluation and Characterization

e Conclusion

Network Based Computing Laborator SC’20 27

Conclusion

Add support for MPI-based communications for cuML applications in Python

Take advantage of MPI collective communication for communication
between workers in cuML

Provide a synthetic benchmarking suite and in-depth analysis of cuML
algorithms

Compare the performance of the proposed MPI-based communication
approach with NCCL-based communication design

Up to 1.6x, 1.25x, 1.25x,and 1.36x speedup for K-Means, Nearest Neighbors,
Linear Regression, and tSVD on 32 GPUs

Will be available to the community

Thank You!

ghazimirsaeed.3@osu.edu

o&ﬁased CO

%

e

%

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

v
A
Laboratory

C X - .
@
B MVAPICH S HIBD HiDL
$ MPI, PGAS and Hybrid MPI+PGAS Library H |g h_Performance High_Performance
Big Data Deep Leaming
The High-Performance MPI/PGAS Project The High-Performance Big Data Project The High-Performance Deep Learning Project

http://mvapich.cse.ohio-state.edu/ http://hibd.cse.ohio-state.edu/ http://hidl.cse.ohio-state.edu/

http://nowlab.cse.ohio-state.edu/

