
Accelerating GPU-based Machine Learning in
Python using MPI Library: A Case Study with

MVAPICH2-GDR

S. Mahdieh Ghazimirsaeed, Quentin Anthony, Aamir Shafi,

Hari Subramoni and Dhabaleswar K. (DK) Panda

Network Based Computing Laboratory

The Ohio State University

{ghazimirsaeed.3, anthony.301, shafi.16, subramoni.1,
panda.2}@osu.edu

Network Based Computing Laboratory 2SC’20

• Introduction

• Motivation

• Overview of the Software Stacks

• MPI-Based Communication Support in cuML

• Performance Evaluation and Characterization

• Conclusion

Outline

Network Based Computing Laboratory 3SC’20

• Unprecedented growth in data generated from diverse sources

• Machine Learning (ML) libraries, tools, and techniques:
processing and extracting useful information from this data

• Scikit-learn and Apache Spark’s MLlib: natively designed to
support the execution of ML algorithms on CPUs.

• GPUs:
– Popular platform for optimizing parallel workloads

– Match for ML applications, which require high arithmetic intensity

Introduction

Network Based Computing Laboratory 4SC’20

• RAPIDS AI: enables end-to-end data science analytic
pipelines entirely on GPUs.

• cuML
– GPU-accelerated ML library

– GPU-counterpart of Scikit-learn

– Supports the execution of ML workloads on Multi-Node Multi-
GPUs (MNMG) systems

Introduction (cont.)

Network Based Computing Laboratory 5SC’20

• Introduction

• Motivation

• Overview of the Software Stacks

• MPI-Based Communication Support in cuML

• Performance Evaluation and Characterization

• Conclusion

Outline

Network Based Computing Laboratory 6SC’20

• Communication stages in cuML:
– The training data is distributed to all workers

– The output of the training stage i.e. the model parameters are
shared with all workers

• Communication Support in cuML:
– Point-to-point communication: Dask

– Collective communication: NVIDIA Collective Communications
Library (NCCL)

Motivation

Network Based Computing Laboratory 7SC’20

Motivation: Combine Ease-of-use with High-performance
Libraries GPU

Support
MNMG
Support

Python
Support

High
Performance

Scikit-learn

Spark’s MLlib

Mahout

PAPIDS cuML

MPI

Our paper

How can we combine the ease-of-use provided by cuML for running ML
applications with the high-performance provided by MPI?

Network Based Computing Laboratory 8SC’20

Motivation: Support MPI-based Collectives in cuML

0

5

10

15

20

25

30

35

40

4 8 16 32 64 128 256 512 1K 2K 4K 8K 16K

La
te

nc
y

(s
)

Message Size (bytes)

NCCL MVAPICH2-GDR

0
2
4
6
8

10
12
14
16
18
20

4 8 16 32 64 128 256 512 1K 2K 4K 8K 16K

La
te

nc
y (

s)

Message Size (bytes)

NCCL MVAPICH2-GDR

0

5

10

15

20

25

4 8 16 32 64 128 256 512 1K 2K 4K 8K 16K

La
te

nc
y (

s)

Message Size (bytes)

NCCL MVAPICH2-GDR

How can we replace NCCL-based collective communications in cuML with MPI-based
communications to take advantage of efficient and GPU-aware collective

communication designs in MVAPICH2-GDR?

AllreduceReduce Bcast

• MVAPICH2-GDR: Support efficient communication between GPU devices

Network Based Computing Laboratory 9SC’20

• Training based on different ML algorithms:
– K-Means

– tSVD

– Random Forest

– Linear Regression

• Understand cuML to achieve the best performance
– being a relatively new ML library

– not studied well by the community

Motivation: Performance Characterization for cuML Algorithms

How can we provide performance characterization for GPU-accelerated cuML Algorithms
and provide guidelines for data scientists to take the most advantage of them?

Network Based Computing Laboratory 10SC’20

• Introduction

• Motivation

• Overview of the Software Stacks

• MPI-Based Communication Support in cuML

• Performance Evaluation and Characterization

• Conclusion and Future Work

Outline

Network Based Computing Laboratory 11SC’20

RAPIDS Software Stack

APACHE ARROW

CUDA

RAPIDS
cuDF cuML cuGraphs

Python

• Built on top of CUDA

• Under the standard specification of Apache Arrow

• Three main components
– cuDF: data-frame manipulation library

– cuML: Machine Library library

– cuGraphs: accelerated graph analytics library

Network Based Computing Laboratory 12SC’20

cuML Components

Primitives Element-wise
operations

Matrix
multiplication

Eigen
Decomposition

standard
deviation

distance/matrix
calculations

Algorithms Linear
regression

Logistic
regression

K-nearest
neighbors K-means

Random
forest

Python
Scikit-learn-like interfaces

• Three main components
– Primitives

• Reusable building blocks for building machine learning algorithms

• Common for different machine learning algorithms

• Used to build different machine learning algorithms

– Machine learning Algorithms

– Python layer
• Provides a Scikit-learn like interface

• Hides the complexities of the C/C++ layer

Network Based Computing Laboratory 13SC’20

cuML Software Stack

Python

Cython

cuML Primitives

CUDA Libraries

CUDA

cuML Algorithms

CUDA/C++

• Software stack of cuML in a system with single GPU

• Primitives and cuML algorithms built on top of CUDA

• The CUDA/C++ layer is wrapped to the Cython layer to expose
the cuML algorithms

Network Based Computing Laboratory 14SC’20

cuML Software Stack in Distributed Setting

Python

Cython

cuML Primitives

CUDA Libraries

CUDA

cuML Algorithms

CUDA/C/C++

UCX

Dask

NCCL

• Two components are added:
– Dask: for handling point-to-point communications

– NCCL: for handling collective communications

Network Based Computing Laboratory 15SC’20

Cluster

Client

Scheduler

Worker WorkerWorker
cuMLHandle cuMLHandle

0 1 2

Dask/UCX
NCCL

cuMLHandle

NCCL Communicator

cuMLHandle

Dask and NCCL Communication Paths in cuML

inject_nccl
_comms_py()cumlHandle

NCCL Communicator

cumlHandle
with NCCL

communicator
Attached

Fit()

• A NCCL communicator is created across the worker processes
• cumlHandle: A class in cuML that is used to manage resources

Network Based Computing Laboratory 16SC’20

• Introduction

• Motivation

• Overview of the Software Stacks

• MPI-Based Communication Support in cuML

• Performance Evaluation and Characterization

• Conclusion

Outline

Network Based Computing Laboratory 17SC’20

MPI-Based Communication Support in cuML

Python

Cython

cuML Primitives

CUDA Libraries

CUDA

cuML Algorithms

CUDA/C/C++

UCX

Dask

MVAPICH2-GDR

MPI4PY

• MVAPICH2-GDR: for handling collective communications
• MPI4PY: Python binding library for MPI

Network Based Computing Laboratory 18SC’20

MPI-Based Communication Support in cuML

MPI4PY

cumlHandle

initialize_mpi
_comms()

MPI_plugin.pyx

import

cdef
extern

cdef
extern

Setup.py

MVAPICH2
-GDR

CUML

CUDA
Llibraries

MPI_plugin.so

Defines inject_mpi_comms_py()

• Use a Cython wrapper to inject MPI communicator to cuML handle

Network Based Computing Laboratory 19SC’20

• Introduction

• Motivation

• cuML Software Stack

• MPI-Based Communication Support in cuML

• Performance Evaluation and Characterization

• Conclusion and Future Work

Outline

Network Based Computing Laboratory 20SC’20

Experimental Setup

Specification SDSC Comet

Number of Nodes 36

Processor Family Xeon Haswell

Processor Model E5-2680 v3

Clock Speed 2.5 GHz

Sockets 2

Cores per Socket 12

RAM (DDR4) 128 GB

GPU Family NVIDIA Pascal P100

GPUs 4

GPU Memory 16 GB (HBM2)

Interconnect IB-EDR (56G)

Network Based Computing Laboratory 21SC’20

Performance Results

CPU vs. GPU

0

500

1000

1500

2000

2500

3000

3500

4000

4500

K-Means Random
Forest

Nearest
Neighbors

tSVD Linear
Regression

Tr
ai

nn
g

Ti
m

e
(s

)

GPU CPU

1.77x

1.73x

1.6x

1.85x

1.57x

Network Based Computing Laboratory 22SC’20

Performance Results

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0

200

400

600

800

1000

1200

1400

1600

1 2 4 8 16 32

S
pe

ed
up

Tr
ai

ni
ng

 T
im

e
(s

)

Number of GPUs

NCCL MVAPICH2-GDR Speedup

Truncated SVD

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

0
200
400
600
800

1000
1200
1400
1600
1800

1 2 4 8 16 32

Sp
ee

du
p

Tr
ai

ni
ng

 T
im

e
(s

)

Number of GPUs

NCCL MVAPICH2-GDR Speedup

K-Means

1.6x speedup for 32 GPUs1.38x speedup on 32 GPUs

Network Based Computing Laboratory 23SC’20

Performance Results

Linear Regression Random Forest

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0
200
400
600
800

1000
1200
1400
1600
1800
2000

1 2 4 8 16 32

Sp
ee

du
p

Tr
ai

ni
ng

 T
im

e
(s

)

Number of GPUs

NCCL MVAPICH2-GDR Speedup

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

0
25
50
75

100
125
150
175
200
225
250

1 2 4 8 16 32

Sp
ee

du
p

Tr
ai

ni
ng

 T
im

e
(s

)

Number of GPUs

NCCL MVAPICH2-GDR Speedup

1.25x speedup on 32 GPUs 1.1x speedup for 16 GPUs

Network Based Computing Laboratory 24SC’20

Performance Results

Nearest Neighbors

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

0
300
600
900

1200
1500
1800
2100
2400

1 2 4 8 16 32

Sp
ee

du
p

Tr
ai

ni
ng

 T
im

e
(s

)

Number of GPUs

NCCL MVAPICH2-GDR Speedup

1.24x speedup on 32 GPUs

Network Based Computing Laboratory 25SC’20

Collectives in cuML Algorithms

0

5

10

15

20

25

30

35

40

45

50

84
1,024

2,048
3,712

8,192
21,5

88
22,6

12
23,6

36
36,6

08
49,5

36
72,1

92
74,2

40

104
,960

136
,704

186
,752

274
,432

275
,456

290
,688

292
,736

297
,044

298
,068

299
,092

326
,720

Nu
m

be
r o

f C
al

ls

Message Size (bytes)

Allreduce in K-Means

Bcast in Nearest Neighbors

Reduce in Nearest Neighbors

0

5

10

15

20

25

30

35

40

4 8 16 32 64 128 256 512 1K 2K 4K 8K 16K

La
te

nc
y

(s
)

Message Size (bytes)

NCCL MVAPICH2-GDR

0
2
4
6
8

10
12
14
16
18
20

4 8 16 32 64 128 256 512 1K 2K 4K 8K 16K

La
te

nc
y (

s)

Message Size (bytes)

NCCL MVAPICH2-GDR

0

5

10

15

20

25

4 8 16 32 64 128 256 512 1K 2K 4K 8K 16K

La
te

nc
y (

s)

Message Size (bytes)

NCCL MVAPICH2-GDR

Allreduce

Bcast

Reduce

• K-Means: Allreduce
• Nearest neighbor: Bcast and Reduce

Network Based Computing Laboratory 26SC’20

Accuracy

0%

20%

40%

60%

80%

100%

1 2 4 8 16 32

Ac
cu

ra
cy

Number of GPUs

After HPO Before HPO

0%

20%

40%

60%

80%

100%

1 2 4 8 16 32

Ac
cu

ra
cy

Number of GPUs

After HPO Before HPO

K-Means Random Forest

• Hyperparameter optimization (HPO) to the real-world Higgs dataset

Network Based Computing Laboratory 27SC’20

• Introduction

• Motivation

• Overview of the Software Stacks

• MPI-Based Communication Support in cuML

• Performance Evaluation and Characterization

• Conclusion

Outline

Network Based Computing Laboratory 28SC’20

• Add support for MPI-based communications for cuML applications in Python

• Take advantage of MPI collective communication for communication
between workers in cuML

• Provide a synthetic benchmarking suite and in-depth analysis of cuML
algorithms

• Compare the performance of the proposed MPI-based communication
approach with NCCL-based communication design

• Up to 1.6x, 1.25x, 1.25x,and 1.36x speedup for K-Means, Nearest Neighbors,
Linear Regression, and tSVD on 32 GPUs

• Will be available to the community

Conclusion

Network Based Computing Laboratory 29SC’20

Thank You!

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

The High-Performance MPI/PGAS Project
http://mvapich.cse.ohio-state.edu/

The High-Performance Deep Learning Project
http://hidl.cse.ohio-state.edu/

The High-Performance Big Data Project
http://hibd.cse.ohio-state.edu/

ghazimirsaeed.3@osu.edu

http://nowlab.cse.ohio-state.edu/

