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Introduction

e Unprecedented growth in data generated from diverse sources

e Machine Learning (ML) libraries, tools, and techniques:
processing and extracting useful information from this data

e Scikit-learn and Apache Spark’s MLIlib: natively designed to
support the execution of ML algorithms on CPUs.

e GPUs:

— Popular platform for optimizing parallel workloads

— Match for ML applications, which require high arithmetic intensity




Introduction (cont.)

e RAPIDS Al: enables end-to-end data science analytic
pipelines entirely on GPUs.

e cuML
— GPU-accelerated ML library

— GPU-counterpart of Scikit-learn

— Supports the execution of ML workloads on Multi-Node Multi-
GPUs (MNMG) systems
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Motivation

e Communication stages in cuML:
— The training data is distributed to all workers

— The output of the training stage i.e. the model parameters are
shared with all workers

e Communication Support in cuML:

— Point-to-point communication: Dask

— Collective communication: NVIDIA Collective Communications
Library (NCCL)




Motivation: Combine Ease-of-use with High-performance
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Our paper [ J

How can we combine the ease-of-use provided by cuML for running ML
applications with the high-performance provided by MPI?




Motivation: Support MPI-based Collectives in cuML

« MVAPICH2-GDR: Support efficient communication between GPU devices
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How can we replace NCCL-based collective communications in cuML with MPI-based
communications to take advantage of efficient and GPU-aware collective
communication designs in MVAPICH2-GDR?




Motivation: Performance Characterization for cuML Algorithms

e Training based on different ML algorithms:

— K-Means
— tSVD
— Random Forest

— Linear Regression

e Understand cuML to achieve the best performance

— being a relatively new ML library

— not studied well by the community

How can we provide performance characterization for GPU-accelerated cuML Algorithms
and provide guidelines for data scientists to take the most advantage of them?
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RAPIDS Software Stack

e Built on top of CUDA
e Under the standard specification of Apache Arrow

e Three main components
—  cuDF: data-frame manipulation library

—  cuML: Machine Library library Python
— cuGraphs: accelerated graph analytics library

RAPIDS
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cuML Components

e Three main components

— Primitives
e Reusable building blocks for building machine learning algorithms

e Common for different machine learning algorithms

e Used to build different machine learning algorithms
uild di i ing algori Python

— Machine learning Algorithms [ scikitlearn-ike interfaces ]

- Python Iayer Algorithms [ Linear J [ Logistic J

. . . . regression regression
e Provides a Scikit-learn like interface g g

e Hides the complexities of the C/C++ layer neighbors RTEES forest

Primitives Element-wise Matrix
operations multiplication

Eigen standard distance/matrix
Decomposition deviation calculations




cuML Software Stack

e Software stack of cuML in a system with single GPU
e Primitives and cuML algorithms built on top of CUDA

e The CUDA/C++ layer is wrapped to the Cython layer to expose
the cuML algorithms Python

Cython

cuML Algorithms

CUDA Libraries




cuML Software Stack in Distributed Setting

e Two components are added:

— Dask: for handling point-to-point communications

. . N Dask Python
— NCCL: for handling collective communications

cuML Algorithms

A Libraries
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Dask and NCCL Communication Paths in cuML

* A NCCL communicator is created across the worker processes
 cumlHandle: A class in cuML that is used to manage resources
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MPI-Based Communication Support in cuML

* MVAPICH2-GDR: for handling collective communications
* MPI4PY: Python binding library for MPI

Dask Python

MPI4PY

cuML Algorithms

cuML Primitives

CUDA Libraries

CUDA
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MPI-Based Communication Support in cuML

 Use a Cython wrapper to inject MPlI communicator to cuML handle

Defines inject_mpi_comms_py()

cumlHandle |- cdef MPI_plugin.
extern —plugin.pyx | ===

A

initialize_mpi | cdef
_comms{() extern t

MPI4PY [ import

v

Setup.py

- =
CUDA

Llibraries
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Experimental Setup

Number of Nodes 36
Processor Family Xeon Haswell
Processor Model E5-2680 v3
Clock Speed 2.5 GHz
Sockets 2
Cores per Socket 12
RAM (DDR4) 128 GB
GPU Family NVIDIA Pascal P100
GPUs 4
GPU Memory 16 GB (HBM2)
Interconnect IB-EDR (56G)




Performance Results
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Performance Results
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Performance Results
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Performance Results
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Collectives in cuML Algorithms
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Accuracy

* Hyperparameter optimization (HPO) to the real-world Higgs dataset
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Conclusion

Add support for MPI-based communications for cuML applications in Python

Take advantage of MPI collective communication for communication
between workers in cuML

Provide a synthetic benchmarking suite and in-depth analysis of cuML
algorithms

Compare the performance of the proposed MPI-based communication
approach with NCCL-based communication design

Up to 1.6x, 1.25x, 1.25x,and 1.36x speedup for K-Means, Nearest Neighbors,
Linear Regression, and tSVD on 32 GPUs

Will be available to the community
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