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Communication in Parallel Machine Learning slow!

« Communication between processing elements takes more time!
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Other Communication Overhead

e Communication of messages e Communication may lead to
consumes energy* congestion in HPC interconnects”
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*P. Mahadevan et al, “A Power Benchmarking Framework for Network Devices”, Springer, 2009.
*T. Hoefler et al, “Multistage Switches are not Crossbars: Effects of Static Routing in High-Performance Networks, IEEE, 2008.



Communication in Parallel Neural Network Training

* Strategies of parallelizing neural networks
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X. Lian et al. "Can decentralized algorithms outperform centralized algorithms? a case study for decentralized parallel
stochastic gradient descent." Advances in Neural Information Processing Systems. 2017.




Existing Approaches vs Our Approach to Reduce Communication

 Concentrated on averaging among all processors

 Parameter Server approach
 Hogwild! (Recht et al. 2011)
e Elastic Averaging SGD (Zhang et al. 2015)

* AllReduce approach

e Quantization in gradients — One bit (Seide et al. 2014), Threshold (Strom et al. 2015),
Mixed (Dryden et al. 2016)

e Sparsification in gradients — Top-K significant (Alistarh et al. 2018), Deep Gradient
Compression (Lin et al. 2018)

 Changed precision — Low (Gupta et al. 2015), Mixed (Micikevicius et al. 2018)

We focus on averaging with neighbors and communicate in an event-triggered fashion



Our Proposed Algorithm

« Communicate model parameters (weights and biases) in events only when necessary
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Sender sends a parameter only when the Receiver continues computation using
change in its norm exceeds a threshold the last received values



How to choose the threshold?

* Choosing the threshold for communication is a design problem
* Simplest option is to choose a constant threshold

e Better option is an adaptive threshold based on the slope of the parameters
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Implementation : Need for One-Sided Communication

 Event of communication is triggered based on parameters at the sender

* Receiver is not aware when event is triggered at sender

‘ MPI_Send > MPI_Recv ‘

Sender PE knows when Receiver PE knows when
to send to receive

X

MPI Two-sided Communication

Sender PE knows when Receiver PE not involved
to send

v

MPI One-sided Communication



Implementation : Framework

Distributed Modules in PyTorch, TensorFlow, CNTK, Horovod provide either the
Parameter Server or AllIReduce approach

* No module supports training involving averaging with just neighbors

* We implement using primitives from PyTorch and MPI

 PyTorch has a C++ frontend (Libtorch) which we combine with MPI one-sided functions



Experiments

* We train a popular convolutional network on the MNIST dataset
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Libtorch MNIST example. https://github.com/pytorch/examples/blob/master/cpp/mnist/mnist.cpp. Accessed: 07-11-2020.



https://github.com/pytorch/examples/blob/master/cpp/mnist/mnist.cpp

Evolution of Norm of Parameters

* Euclidean norm of parameters in our model over iterations in one processor
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e Afterinitial oscillations, weights have a gradual change while bias stays almost flat



Evaluation using a constant threshold

 Choosing a constant threshold for triggering events
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 Changing the model changes the range of acceptable thresholds which has to be found
before training



Comparison between constant and adaptive threshold

Slope-based adaptive threshold does not require extensive tuning
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However adaptive threshold might be sub-optimal



Future Work

* We need to do more experiments of larger models on larger datasets
* Resnet-50 on ImageNet

e Extend code to GPUs

* |nvestigate theoretical properties such as rate of convergence and optimal way to
choose the adaptive threshold



Source Code and Secondary Objectives

Check https://github.com/soumyadipghosh/eventgrad

Combines PyTorch C++ APl and MPI to implement parallel machine learning in general

Also implemented AllReduce based training and decentralized training with neighbors

Add to PyTorch examples repository - https://github.com/pytorch/examples/pull/809

PyTorch C++ APl is still in beta — coverage of models and datasets is quite limited!


https://github.com/soumyadipghosh/eventgrad
https://github.com/pytorch/examples/pull/809

Summary

 Propose a novel communication algorithm for decentralized machine learning based
on events

* Event-Triggered Communication reduces the number of messages, thereby saving on
communication time and energy

e Emphasize on an adaptive threshold dependent on the slope of parameters

* (Can be extended to training algorithms other than SGD and model-parallel
configurations

http://sites.nd.edu/sghosh/ sghosh2@nd.edu



