
EventGraD: Event-Triggered Communication
in Parallel Stochastic Gradient Descent

Soumyadip Ghosh and Vijay Gupta

Machine Learning in HPC Environments (MLHPC) workshop
November 2020

University of Notre Dame

• Communication between processing elements takes more time!

Communication in Parallel Machine Learning slow!

• Communication of messages
consumes energy*

Other Communication Overhead

• Communication may lead to
congestion in HPC interconnects#

*P. Mahadevan et al, “A Power Benchmarking Framework for Network Devices”, Springer, 2009.
#T. Hoefler et al, “Multistage Switches are not Crossbars: Effects of Static Routing in High-Performance Networks, IEEE, 2008.

• Strategies of parallelizing neural networks

Communication in Parallel Neural Network Training

X. Lian et al. "Can decentralized algorithms outperform centralized algorithms? a case study for decentralized parallel
stochastic gradient descent." Advances in Neural Information Processing Systems. 2017.

• Concentrated on averaging among all processors
• Parameter Server approach

• Hogwild! (Recht et al. 2011)
• Elastic Averaging SGD (Zhang et al. 2015)

• AllReduce approach
• Quantization in gradients – One bit (Seide et al. 2014), Threshold (Strom et al. 2015),

Mixed (Dryden et al. 2016)
• Sparsification in gradients – Top-K significant (Alistarh et al. 2018), Deep Gradient

Compression (Lin et al. 2018)
• Changed precision – Low (Gupta et al. 2015), Mixed (Micikevicius et al. 2018)

Existing Approaches vs Our Approach to Reduce Communication

We focus on averaging with neighbors and communicate in an event-triggered fashion

• Communicate model parameters (weights and biases) in events only when necessary

Our Proposed Algorithm

Sender sends a parameter only when the
change in its norm exceeds a threshold

Receiver continues computation using
the last received values

• Choosing the threshold for communication is a design problem
• Simplest option is to choose a constant threshold
• Better option is an adaptive threshold based on the slope of the parameters

How to choose the threshold?

• Event of communication is triggered based on parameters at the sender
• Receiver is not aware when event is triggered at sender

Implementation : Need for One-Sided Communication

MPI_Send MPI_Recv

MPI_Put

Sender PE knows when
to send

Receiver PE knows when
to receive

Sender PE knows when
to send

Receiver PE not involved

MPI Two-sided Communication

MPI One-sided Communication

• Distributed Modules in PyTorch, TensorFlow, CNTK, Horovod provide either the
Parameter Server or AllReduce approach

• No module supports training involving averaging with just neighbors

• We implement using primitives from PyTorch and MPI

• PyTorch has a C++ frontend (Libtorch) which we combine with MPI one-sided functions

Implementation : Framework

• We train a popular convolutional network on the MNIST dataset

Experiments

Libtorch MNIST example. https://github.com/pytorch/examples/blob/master/cpp/mnist/mnist.cpp. Accessed: 07-11-2020.

https://github.com/pytorch/examples/blob/master/cpp/mnist/mnist.cpp

• Euclidean norm of parameters in our model over iterations in one processor

• After initial oscillations, weights have a gradual change while bias stays almost flat

Evolution of Norm of Parameters

• Choosing a constant threshold for triggering events

• Changing the model changes the range of acceptable thresholds which has to be found
before training

Evaluation using a constant threshold

Kernel size of convolutional layers = 5 Kernel size of convolutional layers = 3

• Slope-based adaptive threshold does not require extensive tuning

• However adaptive threshold might be sub-optimal

Comparison between constant and adaptive threshold

Kernel size of convolutional layers = 5 Kernel size of convolutional layers = 3

Using horizon = 1 for the
adaptive threshold for both

• We need to do more experiments of larger models on larger datasets
• Resnet-50 on ImageNet

• Extend code to GPUs

• Investigate theoretical properties such as rate of convergence and optimal way to
choose the adaptive threshold

Future Work

• Check https://github.com/soumyadipghosh/eventgrad

• Combines PyTorch C++ API and MPI to implement parallel machine learning in general

• Also implemented AllReduce based training and decentralized training with neighbors

• Add to PyTorch examples repository - https://github.com/pytorch/examples/pull/809

• PyTorch C++ API is still in beta – coverage of models and datasets is quite limited!

Source Code and Secondary Objectives

https://github.com/soumyadipghosh/eventgrad
https://github.com/pytorch/examples/pull/809

• Propose a novel communication algorithm for decentralized machine learning based
on events

• Event-Triggered Communication reduces the number of messages, thereby saving on
communication time and energy

• Emphasize on an adaptive threshold dependent on the slope of parameters

• Can be extended to training algorithms other than SGD and model-parallel
configurations

Summary

http://sites.nd.edu/sghosh/ sghosh2@nd.edu

