
Michael Garland, November 2020

PROGRAMMING SYSTEMS OF DATA

DATA

Knowledge,
Models,
Actions, …

Program

How do we organize the

external data that

a program accesses/acquires?

How do we organize the

internal data that

a program processes/generates?

DATA STRUCTURES
Every programming system provides common building blocks

>>> powers_of_two()

[1, 2, 4, 8, 16, 32]

>>> identify_speaker()

{'first name': 'Michael', 'last name': 'Garland'}

>>> A = numpy.ones((5,8), dtype=int)

array([[1, 1, 1, 1, 1, 1, 1, 1],

[1, 1, 1, 1, 1, 1, 1, 1],

[1, 1, 1, 1, 1, 1, 1, 1],

[1, 1, 1, 1, 1, 1, 1, 1],

[1, 1, 1, 1, 1, 1, 1, 1]])

List

Dictionary

Array

DATA STRUCTURES
Means by which we compose separate procedures

>>> A = numpy.ones((5,8), dtype=int)

array([[1, 1, 1, 1, 1, 1, 1, 1],

[1, 1, 1, 1, 1, 1, 1, 1],

[1, 1, 1, 1, 1, 1, 1, 1],

[1, 1, 1, 1, 1, 1, 1, 1],

[1, 1, 1, 1, 1, 1, 1, 1]])

>>> sum(A)

array([5, 5, 5, 5, 5, 5, 5, 5])

‘A’ is produced

‘A’ is consumed

PROGRAMMING SYSTEM
Good design enables convenient expression of algorithms

import numpy as np

def cg_solve(A, b):

x = np.zeros(A.shape[1])

r = b - A.dot(x)

p = r

rsold = r.dot(r)

for i in xrange(b.shape[0]):

Ap = A.dot(p)

alpha = rsold / (p.dot(Ap))

x = x + alpha * p

r = r - alpha * Ap

rsnew = r.dot(r)

if np.sqrt(rsnew) < 1e-10:

break

beta = rsnew / rsold

p = r + beta * p

rsold = rsnew

return x

WHERE’S THE PROBLEM?

Convenient Expression

+

Compositional Software

+

High Performance

COSTS OF COMPOSITION
Potential for data copying & conversion at interface boundaries

import numpy

from scipy.sparse import csr_matrix

rows = [0, 0, 1, 1, 2, 2, 2, 3, 3]

columns = [0, 1, 1, 2, 0, 2, 3, 1, 3]

entries = [1, 7, 2, 8, 5, 3, 9, 6, 4]

A = csr_matrix((entries, (rows, columns)),

shape=(4,4),

dtype=int)

>>> A.toarray()

array([[1, 7, 0, 0],

[0, 2, 8, 0],

[5, 0, 3, 9],

[0, 6, 0, 4]], dtype=int32)

>>> numpy.sum(A.data)

45

Does my matrix data
get copied here?

NUMPY ARRAY INTERFACE
Self-describing data can be reused across software modules without copying

Explanation of the array interface: https://numpy.org/doc/stable/reference/arrays.interface.html

>>> A = numpy.zeros((5,8), dtype=int, order='F’)

array([[0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0]])

>>> A.__array_interface__

{'data': (2137481977920, False),

'descr': [('', '<i4')],

'shape': (5, 8),

'strides': (4, 20),

'typestr': '<i4',

'version': 3}

https://numpy.org/doc/stable/reference/arrays.interface.html

NUMPY ARRAY INTERFACE
Self-describing data can be reused across software modules without copying

>>> A = numpy.zeros((5,8), dtype=int, order='F’)

array([[0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0]])

>>> A.__array_interface__

{'data': (2137481977920, False),

'descr': [('', '<i4')],

'shape': (5, 8),

'strides': (4, 20),

'typestr': '<i4',

'version': 3}

Harris, C.R., Millman, K.J., van der Walt, S.J. et al.

Array programming with NumPy. Nature 585, 357–362 (2020).

https://doi.org/10.1038/s41586-020-2649-2

See also:

https://doi.org/10.1038/s41586-020-2649-2

▸ Each system has its own internal memory format

▸ 70-80% computation wasted on serialization and deserialization

▸ Similar functionality implemented in multiple projects

▸ All systems utilize the same memory format

▸ No overhead for cross-system communication

▸ Projects can share functionality (eg, Parquet-to-Arrow reader)

Source: From Apache Arrow Home Page - https://arrow.apache.org/

Learning from Apache Arrow

More here: http://rapids.ai

http://rapids.ai/

APACHE ARROW
Specifying the memory layout for dataframes

Mortgage ID Pay Date Amount

101 12/18/2018 1029.30

102 12/21/2018 1429.31

103 12/14/2018 1289.27

101 01/15/2018 1104.59

102 01/17/2018 1457.15

103 NULL NULL

data = [101, 102, 103, 101, 102, 103]
size = 6
type = INT
bitmask = [0x3F] = [0 0 1 1 1 1 1 1]

data = [1545091200000, 1545350400000, 1544745600000,
1514764800000, 1516147200000, *garbage*]

size = 6
type = DATE
bitmask = [0x1F] = [0 0 0 1 1 1 1 1]

data = [1029.30, 1429.31, 1289.27,
1104.59, 1457.15, *garbage*]

size = 6
type = FLOAT
bitmask = [0x1F] = [0 0 0 1 1 1 1 1]

Mortgage ID

Pay Date

Amount

SCALABLE EXECUTION
Achieving high performance at any scale

Jetson AGX Xavier DGX SuperPodDGX-2

SCALABLE EXECUTION

▪ Many existing interfaces expose ample parallelism

▪ Data often large enough to warrant large machines

▪ How can programming systems help provide this experience?

With convenient, compositional software interfaces

import numpy as np

def cg_solve(A, b):

x = np.zeros(A.shape[1])

r = b - A.dot(x)

p = r

rsold = r.dot(r)

for i in xrange(b.shape[0]):

Ap = A.dot(p)

alpha = rsold / (p.dot(Ap))

x = x + alpha * p

r = r - alpha * Ap

rsnew = r.dot(r)

if np.sqrt(rsnew) < 1e-10:

break

beta = rsnew / rsold

p = r + beta * p

rsold = rsnew

return x

ORGANIZING DATA

Data needs to be partitioned and moved between nodes as needed

Choice may depend on multiple factors, including operations being performed

Programming systems can help orchestrate the placement and movement of data

Scaling requires partitioning and movement of data

This… or this… or this?

A

LEGATE

LEGATE PROGRAMMING SYSTEM
Couple convenient notation with accelerated libraries via an advanced runtime system

try: import legate.numpy as np

except: import numpy as np

def cg_solve(A, b):

x = np.zeros(A.shape[1])

r = b - A.dot(x)

p = r

rsold = r.dot(r)

for i in xrange(b.shape[0]):

Ap = A.dot(p)

alpha = rsold / (p.dot(Ap))

x = x + alpha * p

r = r - alpha * Ap

rsnew = r.dot(r)

if np.sqrt(rsnew) < 1e-10:

break

beta = rsnew / rsold

p = r + beta * p

rsold = rsnew

return x

Familiar Domain-Specific Interfaces

Legate

Data-Driven Task Runtime System

Legion

Accelerated Libraries

cuBLAS, cuSPARSE, cuDNN, cuDF, cuGRAPH, cuIO, …

Early Access Release:

http://developer.nvidia.com/legate

http://developer.nvidia.com/legate

MAKE ADOPTION INCREDIBLY SIMPLE
Even if users are a bit arbitrary in their adoption strategy

import random, numpy, legate.numpy

Code written using the NumPy interface provided by “np”:

def step1(np, n): return np.ones(n), np.ones(n)

def step2(np, x, y): return np.dot(x, y)

Unorthodox adoption strategy:

numpy_likes = [numpy, legate.numpy]

x,y = step1(random.choice(numpy_likes), 1_000_000_000)

print(step2(random.choice(numpy_likes), x, y))

A BRIEF HISTORY OF LEGION

Begun in 2011 at Stanford

Collaboration: Stanford, NVIDIA, Los Alamos

Built for HPC applications on supercomputers

Designed for HPC, but well-suited to data science

HPC CASE STUDY

Rewrote 100K lines of S3D combustion application

Up to 6x faster than MPI+vector Fortran

Up to 2.85x faster than MPI+OpenACC

Port from development system to Titan: 14 hours

Second port to Piz Daint: 4 hours

S3D port to Legion + Singe kernel DSL

Collaboration amongst:

LEGATE ARCHITECTURE
Leveraging task-based runtimes to build a programming system for data analytics

P
ro

g
ra

m
 o

rd
e
r

np.argmin

np.sort

np.add

np.dot

np.mul

np.norm

Application Computed dependence graph

E
x
e
c
u
ti

o
n
 o

rd
e
r

CPUs GPUs

copy

copy

copy

Task execution

DEFERRED EXECUTION MODEL
Enables dynamic analysis regardless of application control flow

Destruction
Wavefront

T

T

T

T

T

T

T

T

T

T

T

T

T

Execution

Wavefront

Analysis

Wavefront
Data Movement Window

NumPy Program Launches Tasks in Program Order

Construction

Wavefront

EXAMPLE: LOGISTIC REGRESSION

def logistic_regression(T, features, target, steps,

learning_rate, sample, add_intercept=False):

if add_intercept:

intercept = np.ones((features.shape[0],1), dtype=T)

features = np.hstack((intercept, features))

weights = np.zeros(features.shape[1], dtype=T)

for step in range(steps):

scores = np.dot(features, weights)

predictions = sigmoid(scores)

error = target - predictions

gradient = np.dot(error,features)

weights += learning_rate * gradient

if step % sample == 0:

print('Log Likelihood of step '+str(step)+': '+

str(log_likelihood(features, target, weights)))

return weights

EXAMPLE: LOGISTIC REGRESSION

Throughput

(iterations/s)

FLEXFLOW

FLEXFLOW

Data-parallel decomposition

Model-parallel decomposition

Hybrid decompositions (many)

Beyond data and model parallelism for deep neural networks

Zhihao Jia, Matei Zaharia, and Alex Aiken.

Beyond Data and Model Parallelism for Deep Neural Networks.

In Proc. 2nd Conf. on Machine Learning and Systems (MLSys), Palo Alto, CA, April 2019.

Zhihao Jia, Sina Lin, Charles R. Qi, and Alex Aiken.

Exploring Hidden Dimensions in Parallelizing Convolutional Neural Networks.

In Proc. Int’l Conf. on Machine Learning (ICML), Stockholm, Sweden, July 2018

https://cs.stanford.edu/~zhihao/papers/sysml19a.pdf
http://proceedings.mlr.press/v80/jia18a/jia18a.pdf

SEARCHING FOR STRATEGIES

Sample	 Sample	Sample	 Sample	At
tri
bu
te
	

P
ar
am

et
er
	

P
ar
am

et
er
	

At
tri
bu
te
	

P
ar
am

et
er
	

At
tri
bu
te
	

P
ar
am

et
er
	

At
tri
bu
te
	

Data	Parallelism	
(S)	

Model	Parallelism	
(P)	

Hybrid	Parallelism	
(S,	P)	

Hybrid	Parallelism	
(S,	A,	P)	

Example parallelization strategies for 1D convolution

Different strategies perform the same computation.

CASE STUDY
Inception-v3 DNN training on ImageNet

Data parallelism

A parallelization strategy found by SOAP search procedure
1.2x faster

Parameter

S
a
m

p
le

GPU 1

GPU 2

GPU 3

GPU 4

CASE STUDY
DLRM training on Criteo Kaggle dataset

DLRM - https://github.com/facebookresearch/dlrm

https://github.com/facebookresearch/dlrm

SCALING STUDY
Hybrid parallelism enabled good

Training performance for DLRM and Candle Uno on the Summit supercomputer.

TensorFlow implementations TensorFlow implementations

https://github.com/ECP-CANDLE/Benchmarkshttps://github.com/facebookresearch/dlrm

https://github.com/ECP-CANDLE/Benchmarks
https://github.com/facebookresearch/dlrm

ML: Find the right architecture and parallel decomposition

HPC: Design efficient programming system for executing them

Parameter

S
a
m

p
le

GPU 1

GPU 2

GPU 3

GPU 4

LEGION RUNTIME

QUESTION
What makes a runtime system like Legion well-suited to this problem?

try: import legate.numpy as np

except: import numpy as np

def cg_solve(A, b):

x = np.zeros(A.shape[1])

r = b - A.dot(x)

p = r

rsold = r.dot(r)

for i in xrange(b.shape[0]):

Ap = A.dot(p)

alpha = rsold / (p.dot(Ap))

x = x + alpha * p

r = r - alpha * Ap

rsnew = r.dot(r)

if np.sqrt(rsnew) < 1e-10:

break

beta = rsnew / rsold

p = r + beta * p

rsold = rsnew

return x

Domain-Specific Program Interfaces

Legate

Data-Driven Runtime System

Legion

Accelerated Libraries

cuBLAS, cuDNN, cuDF, cuSPARSE, cuGRAPH, cuIO, …

Registered Task

CPU variant

NVDLA variant

GPU variant 2

GPU variant 1

Various implementations
& preconditions for using each

Preconditions

Preconditions

Preconditions

Preconditions

Declared inputs Declared outputs

TASK MODEL
Generalize ubiquitous programming concept: procedures

Task ≈ procedure + stronger encapsulation + descriptive dependencies

vs

Remote Procedure Call Model

Focus on allowing arbitrary procedure signatures and transport of whatever data that implies

Task Model

Prescribe a data model for parameters to enable runtime to do more on our behalf

LEGION DATA MODEL
Application data logically organized into a tabular representation

A B C

(0, 0)

.

.

.

(i, j)

.

.

.

Named Fields a.k.a. Columns

Entries addressed by
n-D integer indices

Each field is a
(potentially sparse)

n-D array

LEGION DATA MODEL
Hierarchical data decomposition

A B C

(0, 0)

.

.

.

(i, j)

.

.

.

A B C

(0, 0)

.

.

.

(i, j)

.

.

.

Fine-grained
association of
pieces of data

with tasks

LEGION DATA MODEL
Hierarchical data decomposition

A B C

(0, 0)

.

.

.

(i, j)

.

.

.

Individual operations
specify the partitioning

they intend to use.

LEGION DATA MODEL

Runtime manages versioning, replication, sharding, and movement of data

Operations can specify preferred data decomposition independently rather than working with a fixed decomposition

Copy data when needed; reformat data when profitable

Compose libraries even when they don’t agree on storage format

Exposing data to runtime yields several benefits

AUTOMATED ANALYSIS & SCHEDULING
Tasks graphs quickly grow too complex for manual scheduling

PENNANT mini-app task graph
Showing one time-step on one node

CONTROL REPLICATION
Avoid scaling bottleneck of having a single control thread

Logical Execution Physical Execution

Legate

NumPy

Program

Legate

NumPy

Program

Legate

NumPy

Program

Legate

NumPy

Program

Node 0 Node 1 Node 2

Transparently run N copies of your program

Each node performs 1/N-th of dependence analysis
No sequential bottleneck

Some minimal requirements for this to work

MAPPERS

Legion programs are machine-independent

Mapping policies are machine-dependent:

▪ Where do tasks run? Which variant?

▪ Where is data placed?

▪ How should data be laid out?

Mapping decisions never change semantics

Mapping and scheduling machine independent programs

Legion RuntimeMappers

Learnable
Heuristics

SUMMARY

Machine learning programs are awash in data

Programming systems can help efficiently organize this data

Delivering convenience + compositionality + performance

Data-centric task-based runtime systems are particularly well suited

