BLAZING TEXT

Scalin? and Accelerating Word2Vec using
Multiple GPUs

Saurabh Gupta
Applied Scientist, Amazon Al

BLAZING TEXT

OVERVIEW

» What is Word2Vec?

» Need for speed - Can deep learning frameworks help?
» Hardware view: NVIDIA GPU architecture

» Software view: CUDA C/C++

» BlazingText: GPU acceleration and performance

» Future work

BLAZING TEXT

WORD2VEC

» Dense low-dimensional embedding space such that the
geometry of resulting vectors captures word semantic

similarity
» vec(“King”) - vec("Queen”) + vec("Woman”) = vec("Man")

» This idea has enabled many Natural Language Processing
(NLP) algorithms to achieve better performance - Machine
Translation, POS tagging, NER, Sentiment analysis.

» How to train? Predict surrounding words in a window of
length m of every word.

lcing meg <@

children who

side
son family * @ 2
rlmseI.f"mhe
I
borg helglace hl.S off
% e out said good
n
father life took > i
furthe
school aeatg ° upon bacg 4 you ¢ t
college” begarFam come [« intg v?‘"’ ® o
er<i - at we
mwersntt Sed beca m‘eo througg "W.)]
&g theggain order
vias own
centyry age % 3 wh:,? d eir e ®
)B?s' ¢ later vhere e ONCE o did
& : arog o8 vl vy uf %
Isb® 3 years period be never e Vay does
over had ' e would ®
year ®time old ®» about d faplREY &
day @ @ end k) ® been (L |d will
2 2 ® ine rounghile by - o .
) da last ine g since
seven) . a . should
g o six ;a:mr@ e times 'a.tpoint '2':“8 ’tﬁvmg b“t *Zot possible mus.t‘
""’3 ight nea .
e fc nine @ tWo first ® against ¢ being ﬁ. be can May
k e B zerg 5%?@ — o vith becausg e it e
¢ .J @.‘,’.re releaseg o I‘l * e itseglmost ¢
g b ¢ following from holever €ven an
3 & "s general ¢ ° ¢ without person
o . pla* [according only ’ ¢
| . milliop role m g angf t sl thus either au
@ americes team this whlc althavgiuhis little]
player e its tween ® rather o
control current 15 ﬂw much =l result
al . house played game powero & o o
@ british o * [bod eve n
i i seri esent there nﬁ?o means
d.e engllsg Iondog ® forcs "ﬁog supportpr x yent Tor E 43 ° proces.s
frencg englang ag feg ™S * ® form
world | E A2 fmund casg ¢
france vir cague filmcharacter part * usuall
[.battle @ named ® ha <
® army production natne L ve examp?nerallx
forces companye story & ee people ¢ qften type
sidéfed eumes
MG ingdo s bo% e aled e “'ggs al e
germanx L l-tes‘ ongmal today knowr H
states neg b°°kos wra “ are b
i . dar me [S above
saNi statg o Ilgh.t whi ttep ’ moderg —— manf’ ® othe.r LL:;_" levi|
european %] %Ck publlshed d ®) most several usell
® national L4 base WE e W o
europe : * o ese
s intematlong o : 3 ialx S mmon i
i aeate PERpTER
america . republic formey ¢ famous . _ certain — w
western countries esl “ - developed popu mcluc‘i,lar:lous o
o} coun I'x e%{bl's CDUl'.t|aw ‘@velopmen.t |mportant mdudgg ciffeﬂ‘m'ar
central norltﬂ] govemm ® meorx
® RREp & Hhaatural major
i socie earth local
|slan2) tx sp.cg ek related mmbe.r
fiver economic T worgs ° b
® political "m"*ﬁu
dtx €3 ¢ vemen.t numbers
s} "’”5& sciencg e}
. |
: islands social Oor%wr real
region @ religiou . culture ¢
gagga.s Iar\‘;éate.r gioy? 3 8&2 Sgyteenn

BLAZING TEXT

WORD2VEC INTUITION

Given a sentence - vesessees.. @nd is a great actor...
Try to maximize the probability of

[Tom_Cruise, great]

predicting context words.

eXP(S(wta wc)) [Tom_Cruise, actor]

Z;/Z1 exp(s(wt,]))

p(we|we) =

Output weights
10,000 X 300

Input Weights
10,000 X 300

___ Probability of predicting
great

\ 4

Probability of predicting

One-hot encoded_» . - actor
Tom_Cruise vector
10,000 vocab
e

dimensions Hidden Layer

with 300 units
Softmax classifier with 10,000 outputs

BLAZING TEXT

WORD2VEC INTUITION

Finally, the input weight matrix (10,000 X 300) is what we are interested in. It is
nothing but a word vector lookup table!

However, it is very inefficient to learn the softmax weights (huge summation in the
denominator!). The neural network has a tremendous number of weights, all of which
would be updated slightly by every one of our billions of training samples!

So, Mikolov et al introduced negative sampling, according to which the following
objective function should be maximized:

e / nege1 | \

Tom_Cruise . Any random word vector
actor : :
not in Tom_Cruise’s context

Note: w and c come from different weight matrices. Think of family of LR classifiers!

BLAZING TEXT

WORD2VEC ACCELERATION USING ASYNC SGD ON CPU

Thread 1<—

e INPUT MATRIX
\ / (CENTER WORDS)
Thread 28 -

Thread 3 <—

Thread 4

BLAZING TEXT

NEED FOR SPEED! USE GPU?

» Many downstream NLP applications use Word2Vec to initialize word embeddings.

» Datasets can be of the order of several GBs, on which CPU Word2Vec can take
several hours or even days.

» GPU to the rescue - Use TensorFlow, MXNet, PyTorch etc ?

» These frameworks not very suitable for this application (Hard to beat CPU
implementations - Gensim, FastText):

» Network is not that deep. Do gradient math by hand and write your own kernels.

» SGD with batch size = 1 works the best. Large batches affect convergence
significantly - defeats the purpose of using a deep learning framework

» Data Iteration is compute intensive. Very slow in Python due to GIL.

» Use CUDA APIs for a fine grained control over GPU parallelism!

GPU vs CPU

HETEROGENEQUS PARALLEL COMPUTING

= CPU optimized for fast single-thread execution
— Cores designed to execute 1 thread or 2 threads concurrently
— Large caches attempt to hide DRAM access times
— Cores optimized for low-latency cache accesses
— Complex control-logic for speculation and out-of-order execution

+

* GPU optimized for high multi-thread throughput
— Cores designed to execute many parallel threads concurrently
— Cores optimized for data-parallel, throughput computation
— Chips use extensive multithreading to tolerate DRAM access times

HARDWARE VIEW

-
o,
U

all,

GPU

PCle Bus

=
S

<

- - - - -

g 2 ¢ - <+ -+ - -

-+ - < <+

-

o« o« 3 <

pap-

<

> -+ > ->

Smmm— o
<

———
-

B ||| AN =
SEmmmn s S e S G
OO | | | [|
P ————— el
NN NN =~
—r
NN {NN NN~
B[N {A||e -
S T
([N = = -
—_—
NN(N{NN NN~
-l -\ -\ - - -1 - ...
M N{N[{N|N N -~

-
)
£
T
=
%
o)
L

Device (Global) Memory

s
<
o
2

(GDDRAM)

CUDA EXECUTION MODEL

CUDA EXECUTION MODEL

Software Hardware

a Threads are executed by CUDA cores

Thread

Thread blocks are executed on multiprocessors

» Thread blocks do not migrate
22222222 = Several concurrent thread blocks can

reside on one multiprocessor - limited by
multiprocessor resources (shared
memory and register file)

| et
ore Device X,Y,Z

Thread Block

Multiprocessor

CUDA EXECUTION MODEL

CUDA WARPS

A thread block consists of

2222 2 32 Threads | s > one or more warps

32 Threads
32 Threads A warp is executed

Tglrssf Warps Multiprocessor physically in parallel

(SIMD) on a multiprocessor

Currently all NVIDIA GPUs
use a warp size of 32

SOFTWARE VIEW

BLOCK OF THREADS AND GRID OF BLOCKS

kBIock (),

Grid

* Threads are grouped into blocks
= Blocks are grouped into a grid
= A kernel is executed as a grid of blocks of threads

SOFTWARE VIEW

BLOCKS ENABLE EFFICIENT COLLABORATION

* Threads often need to collaborate
— Cooperatively load/store common data sets
— Share results or cooperate to produce a single result
— Synchronize with each other

* Threads in the same block

— Can communicate through shared and global memory
— Can synchronize using fast synchronization hardware

* Threads in different blocks of the same grid
— Cannot synchronize reliably
— No guarantee that both threads are alive at the same time

SOFTWARE VIEW

THREAD AND BLOCK ID AND DIMENSIONS

* Threads
— 3D IDs, unique within a block

= Thread Blocks

Grida
— 2D IDs, unique within a grid
. . Block
= Dimensions set at launch (©, 0
— Can be unique for each grid Block”
0,2)

= Built-in variables
— threadIdx, blockIdx
— blockDim, gridDim

Thread | Thread | Thread | Thread | Thread
* Programmers usually select
dimensions that simplify the
. . . on | oy | & | G | 41)
mapplng Ofthe appllcatlon data Thread | Thread | Thread | Thread | Thread
to CUDA threads 02 | 1L,2) | @2 [G2 | 42

Block (1, 1)

MEMORY MODEL

CUDA MEMORY HIERARCHY AND GLOBAL MEMORY

= Allocated explicitly by host (CPU) thread
= Scope: all threads of all kernels
* Data lifetime: determine by host (CPU) thread

— cudaMalloc (void ** pointer, size_t nbytes)
— cudaFree (void* pointer)

= Capacity: large (1-6GB)

= Latency: 400-800 cycles é ; ; é
i 1 . gy
Bandwidth: 156 GB/s S
— Data access patterns will limit
bandwidth achieved in practice

= Common uses Global Memory

— Staging data transfers to/from CPU (DRAM)
— Staging data between kernel launches

BLAZING TEXT

Word2Vec Acceleration On GPU

BLAZING TEXT

GPU ACCELERATION CHALLENGES:

> Just like CPU, use n threads to break the file into n parts and do async SGD? Not that
straightforward! Remember that a single GPU thread is much much slower than a

single CPU thread!

» Cannot assume that the file can reside in GPU memory (~12GB). Stream sentences
from disk to GPU’s DRAM? Transfer speed not that good. Batch streaming of
sentences to GPU RAM to amortize cost of data transfer? Possible!

> Given the CUDA threading and memory model, use one GPU thread per center
word? Probably no. Use ~100 threads per word if vector dim = 100

» Threads for vector dot products need to synchronize to calculate the sum (reduce

operation). So one thread block per word? And have as many thread blocks as the
MAX SENTENCE LENGTH?

> The above approach seems reasonable. But really?

BLAZING TEXT

APPROACH 1: MASSIVELY PARALLEL

........... AMD stock is .icceiiiiiiiiiiiiiieeee.. fallll.
A1 LTS 4

Although this approach is massively parallelized, it results in huge accuracy drop.
When a window moves across a sentence, the vector of each word can be
updated up to 2w times, where w is the size of the window. However, with this
approach, due to the parallelism at word level, these updates might get lost.

Alternative approach:

Map a sentence to a CUDA block and each dimension of word vector to a thread.
Each word in the sentence mapped to a block is processed sequentially. This
approach might result in race conditions as well but to a lesser degree than the
former approach.

BLAZING TEXT

APPROACH 2: CONTROL EXCESSIVE PARALLELISM FOR ACCURACY

Sentence 0..... Sentence 1..... Sentence n.....
G| L = L
Block 0O Block 1 Block n

Batch sentences and transfer to GPU. Let each thread block process a sentence!
This approach results in 1.6 - 2x speedup over 8 threaded CPU while retaining the

accuracy.
More implementation details can be found in the paper.

Data I/O can be the bottleneck too. Use CUDA streams.
Execution Time-line —»

GPU

CPU GPU 10 GPU T0 GPU
THREAD

MEMCPY TO MEMCPY TO MEMCPY TO

BLAZING TEXT

SCALING TO MULTIPLE GPUS

> Use data parallelism

» The model parameters - Input and Output vectors for all the words in vocabulary,
are replicated on each GPU

» Each device then independently processes the data partition it owns and updates its
local model, periodically synchronizing the local model with all other N-1 GPUs.

> Efficient model synchronization: NVIDIA's NCCL library, which provides an
AllReduce method that handles the peer-to-peer data transfer between the GPUs in
an optimized way based on the topology of GPU network.

» Synchronization frequency?

BLAZING TEXT

SCALING TO MULTIPLE GPUS: THROUGHPUT

GPUs (BlazingText) # GPUs (BlazingText)

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7
14 : ' ' ' ' ' ' ' 45 : : : : : : :
— GPUs — GPUs
- CPUs 1 —
12 - 40 CPUs
35-
10-
v v 301
§ 8 1 3 25 -
S S
= 2
5 6 §20-
E 5 15 -
4_
10 -
2]
5]
0 - - . 0 - : .
8 16 32 8 16 32
CPU threads (FastText) # CPU threads (FastText)

Figure 1: Skipgram throughput Figure 2: CBOW throughput

BLAZING TEXT

SCALING TO MULTIPLE GPUS: ACCURACY

Table 1: Spearman’s rank correlation coefficient between model scores and human judgement on WS-353 dataset for word
similarity. For word analogy task, we report the accuracies on Google analogy dataset.

GPUs (BlazingText) # CPUs (FastText)
1 2 3 4 5 6 7 8 8 16 32

Similarity Skipgram | .716 .713 .710 .707 .703 .699 .695 .694 | .707 .706 i
Text8 CBOW | .711 .708 .705 .689 .683 .681 .679 .675 | .694 .689 .69
Skipgram | .327 .324 .321 311 .299 .297 .296 .295 | .329 .330 .326
CBOW | .321 .329 .32 .299 .295 .289 .285 .281 | .323 .326 .325
Similarity Skipgram | .659 .658 .656 .653 .655 .659 .651 .650 | .660 .659 .656
1 Billion word benchmark CBOW | .609 .607 .599 .598 .601 .604 .598 .597 | .610 .607 .608
Skipgram | .301 .305 .299 .299 .298 .297 .295 .289 |.300 .302 .301
CBOW | .299 .296 .295 .29 .289 .289 .287 .288 | 311 .314 312

Training Corpus

Analogy

Analogy

BLAZING TEXT

FUTURE WORK

» Use Volta GPU. Available on AWS as P3 instances.

> Better synchronization frequency model - exploit the fast that model updates are
linked to word frequency.

> Better learning rate scheduling.

BLAZING TEXT

THANK YOU!
QUESTIONS?

