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Motivation

Accelerate deep learning training as model and data scale grow

Scale Matters!

The image above and subsequent images are exclusive copyright of their respective sources 
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Prior Arts

Scalability is limited by (global) communication overhead

Parameter server (manager-worker architecture) and its variants
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Livermore Tournament Fast Batch Learning (LTFB)
Multi-Level Tournament Voting with Random Pairing

• Multiple independent trainers 
• Periodically exchange model 

with random peer
• Multiple mini batches or 

epochs of training

• Run local tournament to 
select current or exchanged 
model

• Continue training using 
winning model
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Livermore Tournament Fast Batch Learning (LTFB)
Example
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Livermore Tournament Fast Batch Learning (LTFB)
Multi-Level Tournament Voting with Random Pairing

§ Scalable peer to peer 
communication

§ Use parallel resources to :
‒ reduce total time to train

‒ to achieve higher quality 
solution via more 
extensive training

§ Streamlines hyper 
parameter exploration

Key Benefits
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Experimental Setup

• CIFAR10 and ImageNet1K dataset
• Network architectures taken from original 

(Berkeley) Caffe
• GoogleNet for ImageNet1K

• Same hyper parameter (learning rate, 
convolutional filter sizes, optimizer etc) 
as in original Caffe

• Surface
• 156 Intel Xeon (Sandybridge) compute 

nodes

• 16 CPU cores, 256GB memory, and 2 
Tesla K40 GPUs per node

• Ray
• Sierra (CORAL) early access system
• 54 IBM Power8+ compute nodes
• 20 CPU cores, 256GB memory, and 4 

Tesla P100 (Pascal) GPUs per node

Dataset & DNN Architectures HPC Machines
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Experimental Results
CIFAR10

4 LTFB Trainers vs Caffe
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Experimental Results
CIFAR10

Without tournament exchange (knowledge sharing), Caffe beats LTFB

Digging Deeper : LTFB with(out) Tournament Exchange
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Experimental Results
ImageNet (GoogleNet)

4 LTFB Trainers vs Caffe
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Experimental Results
ImageNet (GoogleNet)

Varying Data Partitioning
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Experimental Results
ImageNet (GoogleNet)

Increased concurrency in LTFB pays off at higher accuracy levels, every round of 
voting explores multiple paths from the strongest models

LTFB Scaling Study: Accelerating Time to Solution
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Livermore Tournament Fast Batch Learning (LTFB)
Multi-Level Tournament Voting with Random Pairing

§ Scalable peer to peer 
communication

§ Use parallel resources to 
reduce total time to train

Ø Streamlines hyper 
parameter exploration

Key Benefits
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Experimental Results
Hyper parameter Exploration

CIFAR10: 4 LTFB trainers with different LR vs fixed LR using default mini batch
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Experimental Results
Hyper parameter Exploration

LTFB achieves ~66% accuracy in 4 
epochs, Caffe did not learn

• Task: explore mini batch / learning rate pairing 
mismatch

• ImageNet dataset, GoogleNet
• A set of 16 learning rates, each given to an 

LTFB trainer
• Caffe has one of the learning rate from the set
• Tournaments help to dynamically select the best 

hyper parameter for the current state of training

Setup 
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Summary
Our Contributions and Future Work

• Present a new multi-level tournament voting parallel training algorithm that uses scalable peer to peer 
communication 

• Our framework streamlines hyper parameter exploration by allowing diversity in each independently 
trained model, and minimizing the time spent training with suboptimal parameters 

• Demonstration of feasibility of the new approach on image classification tasks using HPC clusters
• Future Work: Big Science Big Data HPC Deep Learning

• Extremely large (infinite streams of scientific) data sets




