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Data Analytics & Scientific Computing
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Source: Daniel A. Reed and Jack Dongarra. 2015. Exascale computing and big data.
Commun. ACM 58, 7 (June 2015), 56-68. DOI: https://doi.org/10.1145/2699414



Data Analytics & Scientific Computing

Pro ing e Data-flow, SQL, ...
e MPI, OpenMP, ...

e Text, key-value, graph
e Binary, Arrays, Matrices
e Immutable dataset (Immutable
Shared Memory), Parameter Server
(Centralized Shared Memory)
* Private Memory + Message Passing,
Local Shared Memory
¢ Independent &
Asynchronous Tasks
* MPI Processes
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Data Analytics & Scientific Computing
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What is All-Reduce?
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Distributed Model Training
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All-Reduce with MPI

Principles

e \Vector halving & doubling
e Distance halving & doubling
e Ring algorithms

Factors

e \Vector length

e Number of nodes

e Network bandwidth and latency

* Network topology / Degree of freedom

Algorithms

¢ Binary Tree
e Recursive doubling / Butterfly
e Recursive halving & doubling

Reference: Rabenseifner R. Optimization of collective reduction operations. Ininternational Conference on Computational Science 2004
Jun 6 (pp. 1-9). Springer, Berlin, Heidelberg.



All-Reduce with DataFlow
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All-Reduce with Parameter Servers
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Updating weights with Parameter Servers

Image Reference: Dean J, Corrado G, Monga R, Chen K, Devin M, Mao M, Senior A, Tucker P, Yang K, Le QV, Ng AY. ’\ //
Large scale distributed deep networks. InAdvances in neural information processing systems 2012 (pp. 1223-1231). Y 4



Butterfly All-Reduce with Spark?

“the butterfly pattern introduces complex dependency that
slows down the computation”

Why?

* Creates new RDD at each stage

« Shuffle & Dependencies

« Scheduling Overhead (Task Start-up and Result
Collection)

 Synchronization Overhead

\ SN
Reference: https://github.com/apache/spark/pull/506 \/ \



Problem?

Continue with reduce — broadcast.
Use more parameter servers.

Use MPI, but assume tasks are parallel.
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All-Reduce for Tasks

What are we trying to address?

1. All-Reduce in a Task-based setting
2. Alternative all-reduce algorithms
3. Exploit finer-grained parallelism



All-Reduce in a Task-based setting

Overall Architecture
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All-Reduce in a Task-based setting

Driver Side Implementation

Count=0

\ 4
Wait for tasks

Increment count

Start Global Reduction




Alternative all-reduce algorithms




Finer-grained parallelism

This is not!

!

input —»[ mapper J—» output ——[ serializer ]
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Could be parallel
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Finer-grained parallelism

\Vector Interface

* |nit(key, numTasks, func): Creates a shared variable for the given key
with the number of tasks and a reduction function, the context of
all-reduce is maintained by the returned handle;

e  Commit(vector): Commits a vector for reduction, the func- tion does
not block;

e Get: Get the globally reduced vector, block until comple- tion;



Finer-grained parallelism

Serialization

Upload

Download

Deserialization

Compute

Local
Reduction

Global
Reduction
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Experiment Setup

Table 1: Hardware & Software Specification of the Test

Cluster
Component Detail
Nodes 1 Driver Node, 32 Executor Nodes
Cores per Node 20
CPU Intel(R) Xeon(R) CPU E5-2660 v3 @ 2.60GHz
Memory 64GB
Harddisk Locally Attached (HDD & SSD)
Interconnect Mellanox Technologies MT26428
Software Centos/Linux-2.6, Hadoop 2.7, Spark-2.1.1




Empirical Performance
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Figure 4: Average All-Reduce Performance on 32 Executors
for a Single Iteration



Empirical Performance
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Figure 5: Speed-up of Parallel Butterfly w.r.t
Tree-Reduce+Broadcast on 8, 16, 32 nodes



Empirical Performance
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Application — Neural Net Training

Table 3: All-reduce time in real-world neural network
applications across 32 nodes. Original: Reduce-broadcast.
New: Butterfly all-reduce.

Weight ..
O 1 N
Dataset Neural Net size — log rigtmal New
length (sec.)  (sec.)
Cifar [12] cuda-convnet [5] 5.2 0.356  0.154
Mnist [16] LeNet [15] 5.6 0.447  0.184

ImageNet [9] AlexNet [14] 7.8 17.9 2.4




Conclusion & Future Work

An all-reduce for task-based frameworks
Effectiveness, 2x speed-up on small
datasets (Cifar, Mnist), 7x speed-up on
large datasets (ImageNet)

Further optimization through RDMA,
vector compression

Further research in the context of dynamic
resource allocation
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