
An Efficient Task-based All-Reduce 
for Machine Learning Applications
Zhenyu Li, James Davis, Stephen Jarvis

University of Warwick



Outline
1. Background

1. Data Analytic & Scientific Computing (Tasks vs. Message-Passing)

2. All-Reduce & Machine Learning

3. All-Reduce Implementations (Apache Spark, Tensorflow, MPI)

2. Problem?

3. All-Reduce for Tasks
1. Algorithm

2. Interface & Architecture 

3. Implementation

4. Results
1. Empirical Results

2. Neural Network Results

5. Conclusion & Future Work



Outline
1. Background

1. Data Analytic & Scientific Computing (Tasks vs. Message-Passing)

2. All-Reduce & Machine Learning

3. All-Reduce Implementations (Apache Spark, Tensorflow, MPI)

2. Problem?

3. All-Reduce for Tasks
1. Algorithm

2. Interface & Architecture 

3. Implementation

4. Results
1. Empirical Results

2. Neural Network Results

5. Conclusion & Future Work



Data Analytics & Scientific Computing

Speed Elasticity



Data Analytics & Scientific Computing

Data Analytic

Memory, I/O Bound

Scale-Out/Horizontal

Asynchronous Tasks

Elastic Allocation

Scientific Computing

CPU Bound

Scale-Up/Vertical

Parallel Processes

Static Allocation (MPI 1)



Data Analytics & Scientific Computing

Data Analytic

Memory, I/O Bound

Scale-Out/Horizontal

Asynchronous Tasks

Elastic Allocation

Scientific Computing

CPU Bound

Scale-Up/Vertical

Parallel Processes

Static Allocation (MPI 1)



Data Analytics & Scientific Computing

Source: Daniel A. Reed and Jack Dongarra. 2015. Exascale computing and big data. 

Commun. ACM 58, 7 (June 2015), 56-68. DOI: https://doi.org/10.1145/2699414 



Data Analytics & Scientific Computing

• Data-flow, SQL, ...

• MPI, OpenMP, ...
Programming 

Interface

• Text, key-value, graph

• Binary, Arrays, Matrices
Data Format

• Immutable dataset (Immutable 
Shared Memory), Parameter Server 
(Centralized Shared Memory)

• Private Memory + Message Passing, 
Local Shared Memory

Memory Model

• Independent & 
Asynchronous Tasks

• MPI Processes
Execution Model



Data Analytics & Scientific Computing

1 2 3

SIMD: Single Instruction, Multiple Data



Data Analytics & Scientific Computing

1

2

3

Process Tasks



Outline
1. Background

1. Data Analytic & Scientific Computing (Tasks vs. Message-Passing)

2. All-Reduce & Machine Learning

3. All-Reduce Implementations (Apache Spark, Tensorflow, MPI)

2. Problem?

3. All-Reduce for Tasks
1. Algorithm

2. Interface & Architecture 

3. Implementation

4. Results
1. Empirical Results

2. Neural Network Results

5. Conclusion & Future Work



What is All-Reduce?

1 2 3 4

OP

1 2 3 4



Distributed Model Training

Model 1 Model 2 Model 3

1 2 3

Average



Outline
1. Background

1. Data Analytic & Scientific Computing (Tasks vs. Message-Passing)

2. All-Reduce & Machine Learning

3. All-Reduce Implementations (Apache Spark, Tensorflow, MPI)

2. Problem?

3. All-Reduce for Tasks
1. Algorithm

2. Interface & Architecture 

3. Implementation

4. Results
1. Empirical Results

2. Neural Network Results

5. Conclusion & Future Work



All-Reduce with MPI

Principles

•Vector halving & doubling

•Distance halving & doubling

•Ring algorithms

Factors

•Vector length

•Number of nodes

•Network bandwidth and latency

•Network topology / Degree of freedom

Algorithms

•Binary Tree

•Recursive doubling / Butterfly

•Recursive halving & doubling

• ...

Reference: Rabenseifner R. Optimization of collective reduction operations. InInternational Conference on Computational Science 2004 

Jun 6 (pp. 1-9). Springer, Berlin, Heidelberg.



All-Reduce with DataFlow

Reduce - Broadcast



All-Reduce with Parameter Servers

Updating weights with Parameter Servers

Image Reference: Dean J, Corrado G, Monga R, Chen K, Devin M, Mao M, Senior A, Tucker P, Yang K, Le QV, Ng AY. 

Large scale distributed deep networks. InAdvances in neural information processing systems 2012 (pp. 1223-1231).



Butterfly All-Reduce with Spark?

“the butterfly pattern introduces complex dependency that 

slows down the computation”

Reference: https://github.com/apache/spark/pull/506

Why?

• Creates new RDD at each stage

• Shuffle & Dependencies

• Scheduling Overhead (Task Start-up and Result 

Collection)

• Synchronization Overhead 



Problem?

Continue with reduce – broadcast.

Use MPI, but assume tasks are parallel.

Use more parameter servers.



Outline
1. Background

1. Data Analytic & Scientific Computing (Tasks vs. Message-Passing)

2. All-Reduce & Machine Learning

3. All-Reduce Implementations (Apache Spark, Tensorflow, MPI)

2. Problem?

3. All-Reduce for Tasks
1. Algorithm

2. Interface & Architecture 

3. Implementation

4. Results
1. Empirical Results

2. Neural Network Results

5. Conclusion & Future Work



All-Reduce for Tasks

1. All-Reduce in a Task-based setting

2. Alternative all-reduce algorithms

3. Exploit finer-grained parallelism

What are we trying to address?



All-Reduce in a Task-based setting

Overall Architecture



All-Reduce in a Task-based setting

Count 

equals

#Tasks?

Start Global Reduction

Wait for tasks

Count = 0

Increment count
no

yes

Driver Side Implementation



Alternative all-reduce algorithms

Reduce - Broadcast Butterfly



Finer-grained parallelism

mapperinput serializeroutput

Could be parallel

This is not!



Finer-grained parallelism



Finer-grained parallelism

• Init(key, numTasks, func): Creates a shared variable for the given key 
with the number of tasks and a reduction function, the context of 
all-reduce is maintained by the returned handle; 

• Commit(vector): Commits a vector for reduction, the func- tion does 
not block; 

• Get: Get the globally reduced vector, block until comple- tion; 

Vector Interface



Finer-grained parallelism

Auto-Parallelization

Serialization

Upload

Download

Deserialization

Compute



Outline
1. Background

1. Data Analytic & Scientific Computing (Tasks vs. Message-Passing)

2. All-Reduce & Machine Learning

3. All-Reduce Implementations (Apache Spark, Tensorflow, MPI)

2. Problem?

3. All-Reduce for Tasks
1. Algorithm

2. Interface & Architecture 

3. Implementation

4. Results
1. Empirical Results

2. Neural Network Results

5. Conclusion & Future Work



Experiment Setup



Empirical Performance



Empirical Performance



Empirical Performance



Application – Neural Net Training



Conclusion & Future Work

• An all-reduce for task-based frameworks
• Effectiveness, 2x speed-up on small 

datasets (Cifar, Mnist), 7x speed-up on 
large datasets (ImageNet)

• Further optimization through RDMA, 
vector compression

• Further research in the context of dynamic 
resource allocation



Thank you!

Acknowledgement

This research is supported by Atos IT Services UK Ltd and by the EPSRC 

Centre for Doctoral Training in Urban Science and Progress (grant no. 

EP/L016400/1




