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Data Analytics & Scientific Computing
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Data Analytics & Scientific Computing

Source: Daniel A. Reed and Jack Dongarra. 2015. Exascale computing and big data. 

Commun. ACM 58, 7 (June 2015), 56-68. DOI: https://doi.org/10.1145/2699414 



Data Analytics & Scientific Computing

• Data-flow, SQL, ...

• MPI, OpenMP, ...
Programming 

Interface

• Text, key-value, graph

• Binary, Arrays, Matrices
Data Format

• Immutable dataset (Immutable 
Shared Memory), Parameter Server 
(Centralized Shared Memory)

• Private Memory + Message Passing, 
Local Shared Memory

Memory Model

• Independent & 
Asynchronous Tasks

• MPI Processes
Execution Model



Data Analytics & Scientific Computing
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SIMD: Single Instruction, Multiple Data



Data Analytics & Scientific Computing
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What is All-Reduce?

1 2 3 4

OP

1 2 3 4



Distributed Model Training

Model 1 Model 2 Model 3
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All-Reduce with MPI

Principles

•Vector halving & doubling

•Distance halving & doubling

•Ring algorithms

Factors

•Vector length

•Number of nodes

•Network bandwidth and latency

•Network topology / Degree of freedom

Algorithms

•Binary Tree

•Recursive doubling / Butterfly

•Recursive halving & doubling

• ...

Reference: Rabenseifner R. Optimization of collective reduction operations. InInternational Conference on Computational Science 2004 

Jun 6 (pp. 1-9). Springer, Berlin, Heidelberg.



All-Reduce with DataFlow

Reduce - Broadcast



All-Reduce with Parameter Servers

Updating weights with Parameter Servers

Image Reference: Dean J, Corrado G, Monga R, Chen K, Devin M, Mao M, Senior A, Tucker P, Yang K, Le QV, Ng AY. 

Large scale distributed deep networks. InAdvances in neural information processing systems 2012 (pp. 1223-1231).



Butterfly All-Reduce with Spark?

“the butterfly pattern introduces complex dependency that 

slows down the computation”

Reference: https://github.com/apache/spark/pull/506

Why?

• Creates new RDD at each stage

• Shuffle & Dependencies

• Scheduling Overhead (Task Start-up and Result 

Collection)

• Synchronization Overhead 



Problem?

Continue with reduce – broadcast.

Use MPI, but assume tasks are parallel.

Use more parameter servers.
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All-Reduce for Tasks

1. All-Reduce in a Task-based setting

2. Alternative all-reduce algorithms

3. Exploit finer-grained parallelism

What are we trying to address?



All-Reduce in a Task-based setting

Overall Architecture



All-Reduce in a Task-based setting

Count 

equals

#Tasks?

Start Global Reduction

Wait for tasks

Count = 0

Increment count
no

yes

Driver Side Implementation



Alternative all-reduce algorithms

Reduce - Broadcast Butterfly



Finer-grained parallelism

mapperinput serializeroutput

Could be parallel

This is not!



Finer-grained parallelism



Finer-grained parallelism

• Init(key, numTasks, func): Creates a shared variable for the given key 
with the number of tasks and a reduction function, the context of 
all-reduce is maintained by the returned handle; 

• Commit(vector): Commits a vector for reduction, the func- tion does 
not block; 

• Get: Get the globally reduced vector, block until comple- tion; 

Vector Interface



Finer-grained parallelism

Auto-Parallelization

Serialization

Upload

Download

Deserialization

Compute
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Experiment Setup



Empirical Performance
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Empirical Performance



Application – Neural Net Training



Conclusion & Future Work

• An all-reduce for task-based frameworks
• Effectiveness, 2x speed-up on small 

datasets (Cifar, Mnist), 7x speed-up on 
large datasets (ImageNet)

• Further optimization through RDMA, 
vector compression

• Further research in the context of dynamic 
resource allocation



Thank you!
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