An Efficient Task-based All-Reduce
for Machine Learning Applications

Zhenyu Li, James Davis, Stephen Jarvis

University of Warwick

THE UNIVERSITY OF WARWICK

N

WARWICK

THE UNIVERSITY OF WARWICK

Outline

1. Background

1. Data Analytic & Scientific Computing (Tasks vs. Message-Passing)
2. All-Reduce & Machine Learning
3. All-Reduce Implementations (Apache Spark, Tensorflow, MPI)

2. Problem?
3. All-Reduce for Tasks

1. Algorithm
2. Interface & Architecture
3. Implementation
4. Results
1. Empirical Results
2. Neural Network Results

5. Conclusion & Future Work

N

WARWICK

THE UNIVERSITY OF WARWICK

Outline

1. Background

1. Data Analytic & Scientific Computing (Tasks vs. Message-Passing)
2. All-Reduce & Machine Learning
3. All-Reduce Implementations (Apache Spark, Tensorflow, MPI)

2. Problem?
3. All-Reduce for Tasks

1. Algorithm
2. Interface & Architecture
3. Implementation
4. Results
1. Empirical Results
2. Neural Network Results

5. Conclusion & Future Work

Data Analytics & Scientific Computing

Data Analytics & Scientific Computing

Data Analytic Scientific Computing
Memory, 1/0 Bound CPU Bound
Scale-Out/Horizontal Scale-Up/Vertical
Asynchronous Tasks Parallel Processes
Elastic Allocation Static Allocation (MPI 1)

Data Analytics & Scientific Computing

Data Analytic Scientific Computing
Memory, |/0 Bound CPU Bound
Scale-Out/Horizontal Scale-Up/Vertical
Asynchronous Tasks Parallel Processes
Elastic Allocation Static Allocation (MPI 1)

Data Analytics & Scientific Computing

1
Application Level Mahout, R, and Applications : Applications and Community Codes
1
Y ope— 1
; | 1
Hve || Pig || Sqoop ’ Flume ! FORTRAN, C, C++, and TDEs
i : I
|8 :
e § Map-Reduce Storm : Domain-specific Libraries
pplication Level |
na 2| | _4
‘o 8 2 8 ! MPI/OpenMP . Performance |
e a Il-"lbase lBlgTable : + Accelerator Nli{gmer!cal and Debugging
Middlewareand & @ |3 (key-value store) : Tools ibraries (such as PAPI)
Management | ‘S(’ § \
i s = I
4 System
8 : I |Lustre (Parallel Batch Scheduler e
% ‘ HDFS (Hadoop File System) ‘ : File S)((stem) such as SLURM) MoTnggol;mg
fte] L L]
= 1
= 1
i Fﬁ 1
i 1 Virtual Machines and Cloud Services 1
(optional) :
System Software | . e 1
1
1
e I
|
""" |
1
; i —
Ethernet Local Node Commodity X86 | Infiniband + SAN + Local X86 Racks +
Cluster Hardware i Ethernet PUs or
i e G : ‘ Switches Node Storage Accelerators
1
Data Analytics Ecosystem Computational Science Ecosystem

Source: Daniel A. Reed and Jack Dongarra. 2015. Exascale computing and big data.
Commun. ACM 58, 7 (June 2015), 56-68. DOI: https://doi.org/10.1145/2699414

Data Analytics & Scientific Computing

Pro ing e Data-flow, SQL, ...
e MPI, OpenMP, ...

e Text, key-value, graph
e Binary, Arrays, Matrices
e Immutable dataset (Immutable
Shared Memory), Parameter Server
(Centralized Shared Memory)
* Private Memory + Message Passing,
Local Shared Memory
¢ Independent &
Asynchronous Tasks
* MPI Processes

W

Data Analytics & Scientific Computing

) LI G
£ £ ¥

e/

SIMD: Single Instruction, Multiple Data

N/

=) =

N/

\ /
\/ " \/ :

Data Analytics & Scientific Computing

>

Process Tas

)

S

N

WARWICK

THE UNIVERSITY OF WARWICK

Outline

1. Background

1. Data Analytic & Scientific Computing (Tasks vs. Message-Passing)
2. All-Reduce & Machine Learning
3. All-Reduce Implementations (Apache Spark, Tensorflow, MPI)

2. Problem?
3. All-Reduce for Tasks

1. Algorithm
2. Interface & Architecture
3. Implementation
4. Results
1. Empirical Results
2. Neural Network Results

5. Conclusion & Future Work

What is All-Reduce?

OP

GGG

Distributed Model Training

n 2| B

(Model 1 : (ModelZ) Model 3

N

WARWICK

THE UNIVERSITY OF WARWICK

Outline

1. Background

1. Data Analytic & Scientific Computing (Tasks vs. Message-Passing)
2. All-Reduce & Machine Learning
3. All-Reduce Implementations (Apache Spark, Tensorflow, MPI)

2. Problem?
3. All-Reduce for Tasks

1. Algorithm
2. Interface & Architecture
3. Implementation
4. Results
1. Empirical Results
2. Neural Network Results

5. Conclusion & Future Work

All-Reduce with MPI

Principles

e \Vector halving & doubling
e Distance halving & doubling
e Ring algorithms

Factors

e \Vector length

e Number of nodes

e Network bandwidth and latency

* Network topology / Degree of freedom

Algorithms

¢ Binary Tree
e Recursive doubling / Butterfly
e Recursive halving & doubling

Reference: Rabenseifner R. Optimization of collective reduction operations. Ininternational Conference on Computational Science 2004
Jun 6 (pp. 1-9). Springer, Berlin, Heidelberg.

All-Reduce with DataFlow

¥ X N

ofo
I

(e

Reduce - Broadcast

All-Reduce with Parameter Servers

, —
Parameter Server W = W - WAW

OO0

/Aw H \\
0

Model [:] [:]

Replicas

00
Efj E{‘j)

Updating weights with Parameter Servers

Image Reference: Dean J, Corrado G, Monga R, Chen K, Devin M, Mao M, Senior A, Tucker P, Yang K, Le QV, Ng AY. ’\ //
Large scale distributed deep networks. InAdvances in neural information processing systems 2012 (pp. 1223-1231). Y 4

Butterfly All-Reduce with Spark?

“the butterfly pattern introduces complex dependency that
slows down the computation”

Why?

* Creates new RDD at each stage

« Shuffle & Dependencies

« Scheduling Overhead (Task Start-up and Result
Collection)

 Synchronization Overhead

\ SN
Reference: https://github.com/apache/spark/pull/506 \/ \

Problem?

Continue with reduce — broadcast.
Use more parameter servers.

Use MPI, but assume tasks are parallel.

N

WARWICK

THE UNIVERSITY OF WARWICK

Outline

1. Background

1. Data Analytic & Scientific Computing (Tasks vs. Message-Passing)
2. All-Reduce & Machine Learning
3. All-Reduce Implementations (Apache Spark, Tensorflow, MPI)

2. Problem?
3. All-Reduce for Tasks

1. Algorithm
2. Interface & Architecture
3. Implementation
4. Results
1. Empirical Results
2. Neural Network Results

5. Conclusion & Future Work

All-Reduce for Tasks

What are we trying to address?

1. All-Reduce in a Task-based setting
2. Alternative all-reduce algorithms
3. Exploit finer-grained parallelism

All-Reduce in a Task-based setting

Overall Architecture

Task 3 Task 4
Task 1 Task 2
Slavel Slave?2 New Slave
get
—»| Manager —»| Manager [——| Manager
|]
* ask

Master -

All-Reduce in a Task-based setting

Driver Side Implementation

Count=0

\ 4
Wait for tasks

Increment count

Start Global Reduction

Alternative all-reduce algorithms

Finer-grained parallelism

This is not!

!

input —»[mapper J—» output ——[serializer]

|

Could be parallel

Finer-grained parallelism

Finer-grained parallelism

\Vector Interface

* |nit(key, numTasks, func): Creates a shared variable for the given key
with the number of tasks and a reduction function, the context of
all-reduce is maintained by the returned handle;

e Commit(vector): Commits a vector for reduction, the func- tion does
not block;

e Get: Get the globally reduced vector, block until comple- tion;

Finer-grained parallelism

Serialization

Upload

Download

Deserialization

Compute

Local
Reduction

Global
Reduction

\J

Serialize Serialize
Elem 1 Elem 2
v v
Upload Upload
Elem 1 Elem 2
v v
Get Get
Elem 1’ Elem 2’
Y v
Deserialize Deserialize
Elem 1’ Elem 2’
v v
1+1 2+2

Auto-Parallelization

2) reduced
_____*__I vector

W

N

WARWICK

THE UNIVERSITY OF WARWICK

Outline

1. Background

1. Data Analytic & Scientific Computing (Tasks vs. Message-Passing)
2. All-Reduce & Machine Learning
3. All-Reduce Implementations (Apache Spark, Tensorflow, MPI)

2. Problem?
3. All-Reduce for Tasks

1. Algorithm
2. Interface & Architecture
3. Implementation
4. Results
1. Empirical Results
2. Neural Network Results

5. Conclusion & Future Work

Experiment Setup

Table 1: Hardware & Software Specification of the Test

Cluster
Component Detail
Nodes 1 Driver Node, 32 Executor Nodes
Cores per Node 20
CPU Intel(R) Xeon(R) CPU E5-2660 v3 @ 2.60GHz
Memory 64GB
Harddisk Locally Attached (HDD & SSD)
Interconnect Mellanox Technologies MT26428
Software Centos/Linux-2.6, Hadoop 2.7, Spark-2.1.1

Empirical Performance

50

Average All-Reduce Time (sec.)

0 0.2 04 0.6 038 1 1.2 14 1.6
Vector Length 108

—e— Reduce-Broadcast —— Butterfly Serial —#— Butterfly Parallel

Figure 4: Average All-Reduce Performance on 32 Executors
for a Single Iteration

Empirical Performance

10
8
6
¢ 7
=]
o
5]
Q.
Ny
2y
0
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
Vector Length 108
—e— 8 nodes —— 16 nodes —#— 32 nodes

Figure 5: Speed-up of Parallel Butterfly w.r.t
Tree-Reduce+Broadcast on 8, 16, 32 nodes

Empirical Performance

O Compute

Startup

0

[send-Overhead B Recv-Overhead

Blocking

1SBOpBOIG-20MpPay

EE) [eLIRG-AIang

B [3[[ered-ApIanng

T 1SBIPROIG-90npRY
EETT] [RLISG-AI93Ing

B [o[ered-ApIonng

I 1SBIPROIG-90NPay
BT [eLIDG-AJJI1Ng

w1 [3[[ered-ApIanng

| 1SB2PROIF-30NPIY

EEC—T] [e1I9G-AJJI1ng
m [e[ered-Apranung

Emmr—IT 1SEOPRBOIG-20NPIY
I [eL1aG-AJjIonng

J [Brrered-Ajranng

400

=1
=
(3]

300

(spuodag) aur],

100

=]

60M 90M 120M 150M

Array Size (Number of Floats)

30M

Figure 6: Breakdown of overheads in all-reduce of a large

array size for 10 iterations on a 32-node cluster

Application — Neural Net Training

Table 3: All-reduce time in real-world neural network
applications across 32 nodes. Original: Reduce-broadcast.
New: Butterfly all-reduce.

Weight ..
O 1 N
Dataset Neural Net size — log rigtmal New
length (sec.) (sec.)
Cifar [12] cuda-convnet [5] 5.2 0.356 0.154
Mnist [16] LeNet [15] 5.6 0.447 0.184

ImageNet [9] AlexNet [14] 7.8 17.9 2.4

Conclusion & Future Work

An all-reduce for task-based frameworks
Effectiveness, 2x speed-up on small
datasets (Cifar, Mnist), 7x speed-up on
large datasets (ImageNet)

Further optimization through RDMA,
vector compression

Further research in the context of dynamic
resource allocation

Thank youl!

Acknowledgement

This research is supported by Atos IT Services UK Ltd and by the EPSRC

Centre for Doctoral Training in Urban Science and Progress (grant no.
EP/L016400/1

Aws Engineering and Physical Sciences

Research Council

