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Machine Learning*

* Machine learning is a type of artificial intelligence (Al) that provides computers
with the ability to learn without being explicitly programmed

— Machine learning focuses on the development of computer programs that can change when
exposed to new data
* The process of machine learning is similar to that of data mining

— Both systems search through data to look for patterns, but instead of extracting data for
human comprehension -- as is the case in data mining applications -- machine learning uses
that data to detect patterns in data and adjust program actions accordingly

« Machine learning algorithms are often categorized as being supervised or
unsupervised

— Supervised algorithms can apply what has been learned in the past to new data.
Unsupervised algorithms can draw inferences from datasets.

*http://whatis.techtarget.com/definition/machine-learning

% OAK RIDGE |ieeessie

-National Laboratory | FACILITY



Al (Artificial Intelligence) is Rapidly Advancing in Today’s World
 Doman | DomainExamples | Sample Techniquss | DOE Scisnce Overiap

Voice recognition and textual
assistants

Games and search

Recommender systems

Weather and climate prediction,
Earthquake predictions

Driverless cars

Large-Graph analysis, Linked
structures

Quantum Physics and Chemistry

Siri, Alexa, Wolfram

Alpha-Go, Rubiks-Robot,
Watson

Amazon, Netflix
Weather.com, NHC

Gcar, Tesla

Omics, Multivariates

Many Body Problem,
Monte-Carlo methods

Deep Learning, Semi-supervised
Learning

Large-scale classification and semi-
supervised and reinforcement
learning

Supervised Learning

Large-Scale Classification and
Prediction, and Extremes Prediction

Image processing, classification,
multi modal fusion

Graph Traversal, Clustering,
Tensors

Clustering, Deep Neural Networks

Moderate

Moderate

Low

High

Moderate to High

High

High

1. 1000 years ago: experimental science - description of natural phenomena

2. Last few hundred years: theoretical science - Newton’s Laws, Maxwell’'s Equations
3. Last few decades: computational science - simulation of complex phenomena

4. Present: data-intensive science - move from data to information to knowledge
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DOE’s Office of Science, Advanced Scientific Computing
Research (ASCR) Computation User Facilities

Argonne.) - » DOE is a leader in open
| agomeLeacership IO F == High-Performance
: ——— | OakRidge Leadership Com putlng
, \ P § Computing Center
] | i O * Provide the world’s most
] | ""\ S VA TES powerful computational tools
N FL_ | e for open science
m i o ' o - Access is free to
Natonal nergy Reserch 2 | N researchers who publish

* Boost US competitiveness

- Attract the best and brightest
researchers

NERSC ALCF _ '
Edison is 2.57 PF Mira is 10 PF Titan is 27 PF
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What is the Leadership Computing Facility (LCF)?

 Collaborative DOE Office of Science  Highly competitive user allocation
user-facility program at ORNL and ANL  programs (INCITE, ALCC).

» Mission: Provide the computational and < Projects receive 10x to 100x more resource

data resources required to solve the than at other generally available centers.
most challenging problems. - LCF centers partner with users to enable

 2-centers/2-architectures to address science & engineering breakthroughs
diverse and growing computational (Liaisons, Catalysts).

needs of the scientific community
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Three primary user programs for access to LCF
Distribution of allocable hours

OAK
RIDGE Argonne°

nal Laboratory @ NATIONAL LABORATORY

10% Director’s Discretionary

EEEEEEEEEEEEEEEEEEE

60% INCITE

30% ALCC

ASCR Leadership
Computing Challenge

OAK
RIDGE Argonne°

nal Labor:
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User Programs &
Characteristics

10% Director’s Discretionary

Up to 30% ASCR Leadership
Computing Challenge

Target Review Process Allocation
Range for
Titan
INCITE Open Science 1. Independent Peer 50-150
Review Mch
2. Computational
Readiness
ALCC  DOE Mission DOE ASCR: Merit Review 10-250
Science & Program Priority Mch
DD 1. HPC Preparation OLCF Internal Review <5 Mch

2. User Base
Extension
3. ORNL Agenda

DOE/SC capability computing

A

Proposal
Submission
Deadline

New: June
Renewal: July

February

60% INCITE

Innovative and Novel Computational
Impact on Theory and Experiment

Leadership-class computing

Allocation
Period

January —
December
Up to three
years

July-dune
One year

Anytime,
< one year



Outline

 Quick introduction to machine learning & leadership computing

 Science requirements gathering: highlight DOE/SC/ASCR workshop
reports.

» Case Studies:
— Multimodal characterization of materials
— Predict plasma disruptions in tokamak fusion reactor
— Vertex reconstruction in neutrino physics experiments
— Big health data analytics: massive-scale-analysis of pathology reports

* Discussion of Policy & Technical Challenges
 Highlight OLCF’s Summit Project.
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Experimental and Observational Science Data is Exploding

Report ofthe Manacement DOE Workshop: Data Management, Analysis and
SRS Analysis, and Visua.Iizgation of Visualization for Experimental and Observational
Experimental and Observational Data Data (EOD) WOFkShOp, (201 5)

The Convergence of Data and Computing
Program Leader: Lucy Nowell, DOE/ASCR

https://extremescaleresearch.labworks.org/events/
data-management-visualization-and-analysis-
experimental-and-observational-data-eod-

U.S. DEPARTMENT OF Office of  September 29th - October 1, 2015 worksho
eENERGY Science Bethesda, MD p
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Experimental and Observational Science Data is Exploding

| | | | |

1 TB[ y * Growing data sizes & complexity
Kalinin et al., G-VS .
ACS Nano, 9068-9086, 2015 — Cannot use desktop computers for analysis
100 GBf- . » Need HPC!

Multiple file formats

- FORC time BE .
D 6B - — Multiple data structures
N : :
N = TR on sweep BE — Incompatible for correlation
© FORC-BEPS » Need universal, scalable, format
(©
QO AC swee - . . i ..
100 MB}- " * Disjoint and unorganized communities
BE thermal — Similar analysis but reinventing the wheel
TR-BE BE-PFM A
10 MB- TR-PFM] — Norm: emailing each other code, data
------------- > Need centralized repositories
| | |

- | | ° >
2004 2006 2008 2010 2012 2014 2016 ° Proprietary, expensive software
Year > Need robust, open, free software
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ASCR facilities conducted six exascale
requirements reviews in partnership with DOE
Science Programs

 (Goals included:

— ldentify mission science objectives that require
advanced scientific computing, storage and
networking in exascale timeframe

— Determine future requirements for a computing
ecosystem including data, software,
libraries/tools, etc.

DOE ASCR Exascale Requwements Rewews

Schedule

June 10-12, 2015
November 3-5, 2015
January 27-29, 2016

March 29-31, 2016

June 15-17, 2016

Sept 27-29, 2016

March 9-10, 2017

HEP
BES
FES
BER
NP
ASCR
XCut




Common Themes Across DOE Science Offices
Data: Large-scale data storage and analysis

Experimental and simulated data set
volumes are growing exponentially.
Examples: High luminosity LHC, light
sources, climate, cosmology data
sets ~ 100s of PBs.

Current capability is lacking.

R
s
R =
-

5
.

BIG 1 Analytics

Methods and workflows of data analytics
are different than those in traditional HPC.
Machine learning is revolutionizing field.
Established analysis programs must be

accommodated.
#,I(\I)AK RIDGE | &p0erst
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DOE/SC Requirements Crosscut Report:
Executive summary findings support machine-learning needs

Data:

* “[...] performing analyses of big datasets and
drawing inferences based on these data are
revolutionizing many fields. New approaches are
needed for analyzing large datasets including
advanced statistics and machine learning.”

Software and Application Development:

- Scalable data processing, data analysis,
machine learning, discrete algorithms, and
multiscale/ multiphysics simulations are crucial for
reducing and understanding the large-scale
data that will be produced by exascale
systems.

All 6 workshop reports are available online, X-Cut online soon:
http://exascaleage.org/ ¥ OAK RIDGE | 510
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Example: Multimodal characterization of materials

Novel microscopic and spectroscopic techniques allow characterization of the
different aspects of the materials at the nanosacle.

« Associated data analysis is difficult: Outcome data is big (up to Tb) and multidimensional

Combination of the microscopic and spectroscopic techniques (“multimodal”) is
required for comprehensive characterization of materials.

- Example, Secondary lon Mass Spectrometry (SIMS) can be combined with Atomic force
microscopy (AFM), enabling correlated characterization of functional response at the
nanoscale (AFM) with chemical composition (SIMS).

 Optical spectrometry can be introduced for characterization of the optical properties and
studied sample crystallography, increasing the dimensionality

 Analysis of multimodal data is even more complicated because of dimensionality

* This requires mathematical methods for dimensionality reduction, which
would enable automated or semi-automated data processing and analysis.

LEADERSHIP
CO APUTING
CILITY
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INSTITUTE ForR FUNCTIONAL

Tensor Factorizations at Scale for Scientific Data IMAGING oF MATERIALS

OAK RIDGE NATIONAL LABORATORY

* Multimodal characterization of materials — comprehensive characterization from
chemical composition to functional properties on the nanoscale

3D — 4D nD Data 3D
Optical Spectroscopy

]
]

Mass Spectrometry
Data 1

L ‘J.; ? X
e . ';’ \ *.
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Optical
Spectrum

Mass
Spectrometry
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Rel. Ab

Mass 'Ei 1
o SpectrumA'L L

0 1 1 1
420 430 440

1 1
m/z 490 460

Acknowledge:
Sergei Kalinin,

Anton levlev Scanning Probe Microscopy
ORNL/CNMS (Atomic Force Microscopy)
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Representatives
K
I

n Samples

A

Non-negative Matrix Factorization (NMF)

GEL 3
T s &
2
;
B
Q
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Non-negative matrix factorization

A group of algorithms in multivariate analysis where a matrix X is factorized
iInto two matrices U and V, with the property that all three matrices have no
negative elements.

 NMF has an inherent clustering property, it automatically clusters the
columns of input data X.

« Since NMF is not exactly solvable in general, it is commonly approximated
numerically by minimizing the error function with the constraint that U and V
be non-negative.

* NMF finds applications in such fields as computer vision, document
clustering, chemometrics, chemical sensing, audio signal processing, and
recommender systems.

https://en.wikipedia.org/wiki/Non-negative _matrix_factorization
%OAK RII)Gl EBQ@[?T?,:*;?
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MPI-FAUN: An MPI-Based Framework for Alternating-Updating

Nonnegative Matrix Factorization

A new, high-performance parallel computational framework for a broad class of
NMF algorithms that iteratively solves alternating non-negative least squares (NLS)
subproblems for W and H.

https://github.com/ramkikannan/nmflibrary

Trans. Knowledge and Data Eng.

Miniapp benchmarked on OLCF Platforms

Rhea, 100 nodes, 1600 cores, Low Rank 50,

Distributed Communication avoiding NMF Algorithms

https://arxiv.org/abs/1609.09154, accepted at IEEE

Dataset Type Matrix size NMF Time

Video Dense 1 Million x 13,824 5.73 seconds
Stack Exchange | Sparse 627,047 x 12 Million 67 seconds
Webbase-2001 | Sparse | 118 Million x 118 Million | 25 minutes

Acknowledge: Ramki Kannan, ORNL

Titan — Dense Matrix, Low Rank 50, 100
lterations, 12,650 Nodes, 202500 Cores,

NMF Time
(in Secs)
MU 554

2. 7million x HALS 197.75
2.7 million
ANLS/BPP 219.8
MU 554
3.03 million x HALS 197.75
3.03 million
ANLS/BPP 219.8
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Case Study: NMF of ToF SIMS Data EAING 6 SATERALS

OAK RIDGE NATIONAL LABORATORY

 Time of Flight Secondary lon Mass Spectrometry
— Local investigations of the sample chemical composition
— lonization by Bi* ions
— Sputtering by Cs* ions for investigations in the bulk
— Time of flight of secondary ions is proportional to charge/mass ratio

ToF SIMS scheme

ION-TOF TOF. SIMS® (4100 C151)

lon Mirror
= O 4 10NTOF
>
lon Gun y ~ I I I l
NN/ ® Spectrum
Pulsing
s~ ‘ Detector
' -
Focusing /‘\ Transport Optics
Raster N\ g Extractor
-.__- Electron Flood Gun
Target
Acknowledge: Anton leviev ORNL/CNMS %QAKIIHDGE COMPUTING
e . . . ~ at 4d atl
https://www.ornl.gov/facility/cnms/output/chemical-imaging Fationa Taboratory




Case Study: NMF of ToF SIMS Data

* TOF SIMS Data comes as a dense matrix
* Direct analysis of this matrix is difficult

» Task: Find a U matrix that represents the end members and a 'V
matrix for the abundance map (mixture among these end members)

* For this study,
— m = 128%*128 (image size, “features”),
— n = 1200 (signal length, “samples”),
— Kk, the number of clusters, is between 2-6.

%OAK RIDGI gfoggrbsggg
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Case Study: NMF of ToF SIMS Data

25 Si*
200 gper
SiCs,"
5
© 15| _ s
>-,15 Si,"  Component #1 S'?S+ S'IOCS
= 1l |
é Ca*
E1of Mg* [ «<K"
"‘( CaIOH‘ Component #2 |
" ! 1 L. g
Cs,0H>| | Cs,CI
| Component #3 l Cs,H4 H
5 1 1 R L 1 - | ’J 1+ 11 #l
Nab Cs,0" CNCs; g
Component #4 ll | I
A Al 1!

100

Component concentartion, a.u.

-

INSTITUTE ror FUNCTIONAL
IMAGING oF MATERIALS

OAK RIDGE NATIONAL LABORATORY

Component 1 : Si substrate peaks

Component 2 : Inorganics, e.g., Mg, Ca, K cations

Component 3 : Cesium complexes

Component 4 : Higher Na cation concentrations

Component 5 : Appears to be noise

NMF (and PCA) approaches are
currently insufficient to the task
of multimodal data analysis

Acknowledge: Anton levlev ORNL; Ramki Kannan, ORNL, private communication
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Case Study: Deep learning used to predict disruptions

PRINCETON

in a tokamak fusion reactor PLASIIA PLYSICS

LABORATORY

Most critical problem for Fusion Energy: avoid/mitigate large-scale major disruptions.

Approach: Use of big-data-driven statistical/machine-learning (ML) predictions for the
occurrence of disruptions in “Joint European Torus (JET)”

Princeton Team Goals include:

 improve physics fidelity via development of new ML multi-D, time-dependent software s
including better classifiers;

- develop “portable” (cross-machine) predictive software beyond JET to other devices and
eventually ITER; and

« enhance execution speed of disruption analysis for very large datasets

Development & deployment of advanced ML software via Deep Learning Recurrent Neural
Networks

Bill Tang, “Accelerated Deep Learning Advances in HPC” Invited Talk #DC-7243, GTC-DC-2017

Alexey Svyatkovskiy, “Training Distributed Deep Recurrent Neural Networks with Mixed Precision on GPU
Clusters”, Machine Learning in HPC Environments (this workshop), SC17.. AK RIDGE | h2esie
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Case Study: Deep learning used to predict disruptions O e ——

———

in a tokamak fusion reactor PRINCETON

PLASMA PHYSICS
LABORATORY

» Deep Learning executing on ~6000 GPUs with TensorFlow+MPI.
Tensorflow+MPI (using Singularity containers), CUDA7.5, CuDNN

® o data e o data
— logarithmic scaling |

—— scaling model
- - ideal scaling

0.8

0.4

10°

s]

10°

’I; INN"I

10!

’I ;!/lu'/’l }mh'h

10°

. ol e ———=—""""""] Ack; Mike Matheson, ORNL,

10° 10! 107 10° 10° 10° 10! 10° 10° 10t Titan implementation and scaling
Nepu Nepu

0.2

Bill Tang, “Accelerated Deep Learning Advances in HPC” Invited Talk #DC-7243, GTC-DC-2017

Alexey Svyatkovskiy, “Training Distributed Deep Recurrent Neural Networks with Mixed Precision on GPU
Clusters”, Machine Learning in HPC Environments (this workshop), SC17.. AK RIDGE | t50esie
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Pilot Study: Collision vertex reconstruction in HEP % Fermilab

FNAL (MINERVA) and ORNL Computational ' c-"0 Detection for MINERVA

Data Analytics Group (CDA) collaborated to
improve their ML networks for vertex
reconstruction.

A. Terwilliger, G. Perdue, D. Isele, R. M. Patton, and S.R.
Young. “Vertex Reconstruction of Neutrino Interactions using
Deep Learning.” In Proceedings of the 2017 International
Joint Conference on Neural Networks (IJCNN), pp. 2275-
2281. IEEE Press, 2017. doi:10.1109/[JCNN.2017.7966131.

Analytics of Deep Learning
Hyper-parameter search running
at scale on Titan.

Pl: R. M. Patton (ORNL), G. Perdue (FNAL)
Sponsor: ORNL LDRD, FNAL ¥ OAK RIDGE | (5855
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Multi-node Evolutionary Neural Networks for Deep Learning
(MENNDL)

Premise: For every data set, there exists a - |
corresponding neural network that performs optimally ®
with that data .

« ORNL Data Analytics Group used Titan to develop an
evolutionary algorithm to search for optimal hyper-parameters

and topologies for ML networks. f
- Demonstrated on 18,000 nodes of Titan using high energy R -
physics data through collaboration with Fermilab - N
 Evaluated against multiple datasets __ 2
- Standard computer vision datasets ['fﬁ'lag.,, m -_

* Neutrino detector vertex finding dataset

- SNS Small angle scattering model fitting dataset

» Currently exploring additional datasets and evaluating performance
on Summit-Dev

% OAK RIDGE | o
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HEALTH DATA

The "big data” revolution in health care is well ¥ sciences Instrrure
underway

» Advances in machine learning coupled with the explosion of
health data is showing promise for

o accelerated biomedical research discovery

o clinical decision support

o guiding personalized treatments and disease management

o helping uncover better preventive practices

o improving workflow and streamlining communication and coordination
o offering new ways to handle waste, fraud, and abuse

O ...

Ack: Georgia Tourassi, (ORNL), Arjun Shankar (ORNL)
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Al to support national cancer surveillance

i
L
J
.

- Molecular Initial Subsequent Progression  Survival
Demographics Pathol
arap R Characterization Treatment  Treatment Recurrence Cause of Death
N
AT i ¥
Understand Sl .
treatment and n i \&4 < { SEER C;ncer Information |
improve outcomes in \”/ ) . esource .
the “real world” ! |
2 : |
(22 Prospectively support - .
= development of new Exposoms Cenome

diagnostics and
treatments

Ack: Georgia Tourassi, (ORNL)

HEALTH DATA
SCIENCES INSTITUTE

OAK RIDGE NATIONAL LABORATORY
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HEALTH DATA

A scalable framework for Al-assisted information SCIENCES INSTITUTE
extraction from pathology reports (text understanding)

g
Certified Tumor |:>
Registrar

CTR at a cancer registry reviews complete
patient medical record + path report

Regional cancer registries collect case
information and aggregate for NC| SEER

NLP practice database

R - research work:

devisean algorithn - Challenge: Scale deep learning - based
test its accuracy natural language processing across cancer
D - development work: patients, registrars, and information
aurficient. gerformence and sCALing abstraction tasks

characteristics

. . OAK RIDGE LEADERSHIP
ACk: Georgla TouraSSL (ORN L) %Nationa]l.ubomtory (F:SCN:LPIUTTYWG



HEALTH DATA

Experimental Pipeline SCIENCES INSTITUTE

Clinical  reature Extraction Stack  Traditional NLP Stack Standard ML Stack
Reports

DATA PRE-PROCESSING [ g)\ RULE-BASED SYSTEMS (RL) PERFORMANCE METRICS ™\ [ —l o0s e handon | (e
E— . ayes
S [Bullerie e = . Cor_mtextu_allze (keywords for B N \.a | A -
« Non-contradicting labels €| | topics of interest) __ |+ Precision (positive v W L Sw [ sm [m]
e Incorrectoraan @ « Term identification predictive value) / Recall
1019 o « Classification || (sensitivity) / F1 per class l
annotations 1 = 4 1 | !
I le si © * Macro / Micro scores Text Corpora Deep Learning Stack Multi-task Learning
* Small sample sizes £ N\ (aggregate performance Pubmed
» Corpus curation g = \ over all) R GoOgle N B custn | | °‘“"“"J
O MACHINE LEARNING (ML) r—- Wikipedia
o] . RNN ‘ el Outlier detection J
L 5 *  Naive Bayes (NB) L \ )|t
o * Logistic Regression (LR) a 7
e * Random Forest (RF)
FEATURE REPRESENTATION N | |2 o * Support Vector Machines (SVM) VALIDATION STRATEGIES '\ . . .
zZ c * EBdreme gradient boosting tree Best performing algorithm is a
o U=plE 2l el *  K-fold cross validation (K- Hierarchical Attention Neural Network
« Bag-of-graphs - E \ fold)
+ RAKE ¢ DEeeP LEARNING (DL) + Leave-one-registry out . .
1 i . . Primary Cancer Subsite:
+ CHUNK > * Convolutional neural nets (CNN) (LORO) . F1 =0.81+0.03
« GLOVE 8 e Hierarchical Attention nets (HAN) L | Leave-one-case-out per micro- score=uv. =\2o
3 *  Multi-task Deep neural net (MT- registry (LOO_R)
=z DNN) Histological Grade:
i - = +
\. ( = { \. micro-F1=0.90+0.02

H.-J. Yoon, A. Ramanathan, G.D. Tourassi, Multi-Task deep neural networks for automated extraction of primary site and laterality information from
cancer pathology reports. 2016 INNS Conference on Big Data, October 23-25, Greece
J.X. Qiu, H.-Y. Yoon, P.A. Fearn, G.D. Tourassi, “Deep Learning for Automated Extraction of Primary Sites from Cancer Pathology Reports,” to appear
in IEEE Journal of Biomedical and Health Informatics (2017).
S. Gao, M.T. Young, J.X. Qiu, J.B. Christian, P.A. Fearn, G.D. Tourassi, A. Ramanathan, “Hierarchical Attention Networks for Information Extraction from
Cancer Pathology Reports,” submitted to the Journal of American Medical Informatics Association (05/2017).
https://github.com/ECP-CANDLE/Benchmarks/tree/master/Pilot3/P3B1 (Multi-task deep neural network)
https://github.com/ECP-CANDLE/Benchmarks/tree/master/Pilot3/P3B2 (Generative models using recurrent neural networks) #,OAK RIDGE COMPUTING

National Laboratory | FACILITY




Scalable R Development Platform for Big Data Analytics

+ Engage parallel math libraries at scale 2 Julv 6. 2016
* R language unchanged HPC yo

» New distributed concepts “OLCF Researchers Scale R to Tackle Big Science
New profiling capabilities Data Sets”

http://pbdr.org o ; ; B N . . .
:\r']‘_a;"i’tsjng‘?;fr?s:fejFc’gﬂngﬁtr;"e' for situations where one needs interactive near-
. In-situ staging capability via ADIOS real-time analysis, the pbdR approach is much
better [than Apache Spark—like frameworks].”

PCA of a 134 GB matrix: “hours on . . . Apache Spark, .
. . less than a minute using R.”

Programming with Big Data in R

pbdMPI

......

sty “ORNL Researchers Bridge the Gap Between R,
HPC Communities”

. ACML (AMD) 1 11 A tE)
< : ...‘untapped [R] domains” represent an enormous
R potential user base for world-class computers .”

c
cuSPARSE (NVIDIA) pbdDEMO ‘ )
R

d Core

Schmidt, Chen, Matheson, and Ostrouchov (2016). Programming with BIG Data in R: Scaling Analytics from One to Thousands of
Nodes, Big Data Research, in print online.

Schmidt, Chen, and Ostrouchov (2016). Introducing a New Client/Server Framework for Big Data Analytics with the R Language.
XSEDE16 Conference on Diversity, Big Data, and Science at Scale, Article No. 38. %0 AK RIDGE | Lesosrstie
~< | COMPUTING
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Emerging Science Activities:
Selected Machine Learning Projects on Titan: 2016-2017

Program PI Pl Employer Project Name Allocation (Titan core-hrs)
Discovering Optimal Deep Learning and Neuromorphic Network Structures using Evolutionary
ALCC Robert Patton ORNL i 75,000,000
Approaches on High Performance Computers
ALCC Gabriel Perdue FNAL Large scale deep neural network optimization for neutrino physics 58,000,000
ALCC Gregory Laskowski GE High-Fidelity Simulations of Gas Turbine Stages for Model Development using Machine Learning 30,000,000
ALCC Efthimions Kaxiras Harvard U. High—Throughput Screening and Machine Learning for Predicting Catalyst Structure and Designing 17,500,000
Effective Catalysts
ALCC Georgia Tourassi ORNL CANDLE Treatment Strategy Challenge for Deep Learning Enabled Cancer Surveillance 10,000,000
DD Abhinav Vishnu PNNL Machine Learning on Extreme Scale GPU systems 3,500,000
DD J. Travis Johnston ORNL Surrogate Based Modeling for Deep Learning Hyper-parameter Optimization 3,500,000
DD Robert Patton ORNL Scalable Deep Learning Systems for Exascale Data Analysis 6,500,000
DD William M. Tang PPPL Big Data Machine Learning for Fusion Energy Applications 3,000,000
DD Catherine Schuman ORNL Scalable Neuromorphic Simulators: High and Low Level 5,000,000
DD Boram Yoon LANL Artificial Intelligence for Collider Physics 2,000,000
DD Jean-Roch Vlimant Caltech HEP Deeplearning 2,000,000
DD Arvind Ramanathan ORNL ECP Cancer Distributed Learning Environment 1,500,000
DD John Cavazos U. Delaware Large-Scale Distributed and Deep Learning of Structured Graph Data for Real-Time Program Analysis 1,000,000
DD Abhinav Vishnu PNNL Machine Learning on Extreme Scale GPU systems 1,000,000
DD Gabriel Perdue FNAL MACHINE Learning for MINERVA 1,000,000
TOTAL 220,500,000

% OAK RIDGE | e
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OLCF Strategic Scientific Accomplishments: 2016

Nanoscience

Engineering

Geosciences

Materials Science

Geosciences

Markus Eisenbach
ORNL

Eisenbach and team
modeled the properties of
strongly magnetic regions
of an FePt nanoparticle.
The researchers used the
LSMS code on Titan to
further determine the
magnetic anisotropy of
more than 1,300 atoms
from regions of the
nanoparticle.

Y. Yang, et al. 2017.
Nature. 542.

Peter Vincent
Imperial College

Vincent’s team is tackling
unsteady airflow patterns
in jet engines and
providing engineers with
an unprecedented tool to
solve long-standing
design problems.

P. Vincent, et al. 2016
Proc. of the Int’l. Conf. for
HPC, Net., Storage and
Analysis.

James McClure
Virginia Tech

McClure’s team created a
computational framework
to study complex
subsurface interactions,
incorporating micro-CT
imaging data to directly
visualize the movement
of fluids in underground
reservoir rocks and other
geologic materials.

R. T. Armstrong, et al.
2016. Phys. Rev. E. 94.

All from 2016 work conducted on Titan through OLCF’s INCITE program.

Sharon Glotzer
University of Michigan

Glotzer’s team ran a
series of hard particle
simulations to study
melting in 2-D systems,
exploring how particle
shape affects the physics
of a 2-D solid-to-fluid
melting transition.

J. A. Anderson, et al.
2016. Computer Physics
Comm. 204.

Jeoren Tromp
Princeton University

Tromp and his team
modeled Earth’s interior
using Titan. This 3-D map
shows shear wavespeed
perturbations calculated
using data from 253
earthquakes.

E. Bozdag, et al. 2016.
Geophysical J. Int’l. 207.
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Future Policy and Technical Challenges/Opportunities:
Convergence of HPC, Data Analytics, and Al Workflows

Resource Management Systems (job schedulers) & Queue Policies

— Too many jobs?, jobs too long? (relative to HPC jobs mix)

— Interactive and/or real-time access & fine grain control

— Data reuse on compute partition (e.g., NVRAM), spanning jobs, users, projects?
Resource Specialization & Diversity (multi-level heterogeneity)

— Subset of nodes with special operating conditions/requirements

Resource Interoperability (middleware services)

— Containers: interactions with diverse HPC system software

HPC Center Support for Rapidly Evolving ML Frameworks?
Resource & Data Access (authentication, authorization and data access)

— Science applications are already spanning multiple data centers with varying security policies.
— Data silos within and across organizations

LEADERSHIP
COMPUTING
FACILITY
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Summit will replace Titan as the
OLCF’s leadership supercomputer

/\A\
summi

* Many fewer nodes

[

* Much more powerful nodes

* Much more memory per node
and total system memory

* Faster interconnect

* Much higher bandwidth
between CPUs and GPUs

* Much larger and faster file
system

Feature Titan Summit

Application Performance Baseline 5-10x Titan

Number of Nodes 18,688 ~4,600

Node performance 14 TF >40 TF

Memory per Node 32 GB DDR3 + 6 GB GDDR5 512 GB DDR4 + 96 GB HBM2
NV memory per Node 0 1600 GB

Total System Memory 710 TB >10 PB DDR4 + HBM2 + Non-volatile

System Interconnect
(node injection bandwidth)

Gemini (6.4 GB/s)

Dual Rail EDR-IB (25 GB/s)

Interconnect Topology

3D Torus

Non-blocking Fat Tree

Processors

1 AMD Opteron™
1 NVIDIA Kepler™

2 1BM POWER9™

6 NVIDIA Volta™

File System

32 PB, 1 TB/s, Lustre®

250 PB, 2.5 TB/s, GPFS™

Peak power consumption

9 MW

15 MW

¥ OAK RIDGE | giaiiie
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Summit Node Overview
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42 TF (6x7 TF)

96 GB (6x16 GB)

512 GB (2x16x16 GB)
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16 GB
GPU
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Volta Details

Tesla V100 for NVLink

Tesla V100 for PCle

PERFORMANCE
with NVIDIA GPU Boost”

DOUBLE-PRECISION

7 . 8 TeraFLOPS

SINGLE-PRECISION

1 5 . 7 TeraFLOPS

DEEP LEARNING

1 2 5 TeraFLOPS

DOUBLE-PRECISION

7 TeraFLOPS

SINGLE-PRECISION

1 4 TeraFLOPS
TensorCores™

Mixed Precision
DEEP LEARNING
(16b MutliplyAdd and

1 1 2 TeraFLOPS  32b Accumulate)

INTERCONNECT BANDWIDTH
Bi-Directional

NVLINK

300 csrs

PCIE

32 cers

MEMORY
CoWoS Stacked HBM2

CAPACITY
1 6 GB HBM2

BANDWIDTH

900 o

Note: The performance numbers are peak and not representative of Summit’s Volta
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Tesla V100 Tensor Cores
>C°.0 ”C0.1 “CO,Z ‘>c0,3 ‘

C1,0 c1,1 c1,2 c1,3

D =

CZ,O c2,1 c2,2 c2,3

Co Gy GCip G
FP16 or FP32

FP16 or FP32

» Tesla V100’s Tensor Cores are programmable matrix-multiply-and-accumulate units, delivering up
to 125 Tensor TFLOPS for training and inference applications.

— Each Tensor Core provides a 4x4x4 matrix processing array which performs the operation
D=A*B +C, where A, B, C and D are 4x4 matrices.

— The Tesla V100 GPU contains 640 Tensor Cores: 8 per SM.

— The matrix multiply inputs A and B are FP16 matrices, while matrices C and D may be FP16 or FP32
matrices.
« Each Tensor Core performs 64 floating point FMA mixed-precision operations per clock and 8
Tensor Cores in an SM perform a total of 1024 floating point operations per clock.

* This is a 8X increase in throughput for deep learning applications per SM compared to Pascal
GP100 using standard FP32 operations, resulting in a total 12X increase in throughput for the Volta
V100 GPU compared to the Pascal P100 GPU.

% OAK RIDGE
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Summit Early Evaluation System

Summit EA System:
Each IBM S822LC node has:

« 2x IBM POWERS8+ CPUs
— 32x 8GB DDR4 memory (256 GB)

— 10 cores per POWERS+,
each core with 8 HW threads

 4x NVIDIA Tesla P100 GPUs
— NVLink 1.0 connects GPUs at 80 GB/s

3 racks for development,
each with 18 nodes

One rack of login and
support servers

Nodes connected in a full
fat-tree via EDR InfiniBand

Liquid cooled w/ heat

— 16 GB HBM2 memory per GPU Mellanox EDR InfiniBand Fabric exchanger rack
» 2x Mellanox EDR InfiniBand | . * One additional 18-node
B B rack is for system software

+ 1600 GB NVMe storage

115 GB/s 38 GB/s 115 GB/s

\> 27) % L)
@0“’ %, @e‘b %
DDR4 BW is Read+Write

X-Bus and NVLINK are bi-directional
“‘M@ %QAK RIDGE | &5oersae
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Preparation for Summit

 DGX-1 architecture and use of NVLink similar to Summit-dev
— Ease the preparation for DNN training at larger scales

Summit-dev
(IBM's S822L.C)

| I
B B

PCle PCle PCle PCle -

—> I {4 Switch .  SWwitch Switch 115 GB/s 38 GB/s 115 GB/s
oora GOSN CPU SSSSSSSS  CPU SN 00w
—b{PlOO! iP]DO{d— — lPlOOl -

P100 | % . %
‘ A I Al

Tl B o GPU GPU GPU
— | P100 | P100 | <— — | P100 | P100 | +«—

40 GB/s 40 GB/S
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