
Mike Houston

DEEP LEARNING PRODUCTION
AND SCALE

Deep Learning has changed the way
we think about developing software

WHERE IT ALL STARTED
The magic algorithm from the 80s

“Neural nets are universal approximators, convolutions a good prior for spatial
data… there seems to be no limit to what these CNNs can learn!”

— Someone in Yann LeCun’s lab, circa 2010

IMAGE “SARA”

Tree

Cat

Dog

Deep Learning Framework

“turtle”

Forward Propagation

Compute weight update to nudge

from “turtle” towards “dog”

Backward Propagation

Repeat

Training

DL TRAINING 101

2011, 2012, 2013…

Compute power finally enough to train DNNs at scale

Simplified DNN architectures (ReLU) and smart regularization tricks (Dropout)

Research results exploded, beating several tough perception challenge benchmarks

Timescales started to change…

Dreams became reality

2017

Used as a building block to improve many baseline systems, for ads, content
recommendation, image/video search, speech recognition, autonomous vehicles…

Results quickly transitioning from research to production

Many self-taught engineers are now using Deep Learning frameworks and methods to
add value to their products

Deep Learning is now (almost) a commodity

Deep Learning has changed the way we
think about developing software…

… we need to actually change the way we develop software!

Source code

Compiler

Executable

Data

Deep Learning

Predictor

Source Code

SW DEV PROCESS
Write code, compile, test,

debug, repeat…

ExecutableLogs, stdout, profiler

Compiler

Run, debug

Manually improve

code

Write initial code

DL-BASED SW PROCESS
Collect initial data, train,

run/debug, mine new data

Dataset

Predictor
Inference results,

confidence estimates,

characterization, etc.

Deep Learning

Run, debug

Automatically refine

data, collect new

data

Collect initial data

DL-BASED SOFTWARE PROCESS

1. Given a fixed dataset, find the best predictor

a) Explore best architectures/models (meta-optimize) — large-scale map jobs

b) Fit one model give meta-params — multi-GPU/node, high-bandwidth job

2. Given a fixed predictor, find the next best data

a) Mine/analyze raw, unlabeled data — large-scale inference jobs

b) Store datasets, models, experiment data — asset/version management system

3. Deploy

a) Convert end-to-end inference pipeline — exporter/converter/compiler to target env

Methods & tools required

POST /datasets/{id}

Datasets

Deep Learning

Manually

selected dataLabels

Train/test

data

LabelingMetrics Simulation,

verification results

Inference optimized DNN

(TensorRT)

DL FOR CARS
PBs of data, large-scale

labeling, large-scale
training, etc.

Datasets

Intelligently

selected data

Train/test

data

Inference optimized DNN

(TensorRT)

POST /datasets/{id}

Trained Models

Labels

Mine highly confused / most

informative data

DL FOR CARS
Active learning strategies to

meet business needs

Deep Learning

Labeling

BUILDING AN AI SUPERCOMPUTER

15

40 PetaFLOPS Peak FP64 Performance | 660 PetaFLOPS DL FP16 Performance | 660 NVIDIA DGX-1 Server Nodes

ANNOUNCING
NVIDIA SATURNV WITH VOLTA

KEY FINDINGS

DNN’s are inherently more stressful than HPC and other workloads
Plan for higher density power per rack, and associated cooling demand

Implement a non-blocking networking fabric
InfiniBand networking deployed in a fat-tree topology, with a minimum of 2 connected
InfiniBand EDR ports per node

Storage must support very large datasets with read-heavy I/O
Local SSD/NVMe cache for accelerated reads. NFS appliances with 10GbE for small cluster
configs. Parallel FS starting at medium clusters, 32+ nodes. Deep tiering and caching for
large scale

Use proven config. models for easy DNN scalability
Modular designs, easily replicable, predictable performance. 36-node pods for large
systems

Learnings from building the world’s most energy-efficient AI supercomputer

Accelerating Development, Making Autonomous
Vehicles Safer

SUPER-REAL-TIME
SIMULATION

Self-driving technologies continually re-evaluated to surpass
safety of human-driven

Simulation evaluates dangerous, uncommon scenarios

Super real-time sim = 300,000 miles driven in 5 hours on 8
SaturnV nodes

Every paved road in the U.S. in just 2 days

NETWORKING TOPOLOGY

• Ingest data as fast as possible

• Pass data rapidly between nodes
across cluster

• Similar to HPC networking
architecture

• InfiniBand = ultra high bandwidth, low
latency, collision free

• Two-tier network with root and leaf
switches

• Any to Any connectivity with full bi-
section bandwidth & minimum
contention between nodes

SMALL CLUSTER

• Assume growth for up to 12 nodes

• 2 racks, 2 IB switches (36 ports)

• 19.2 kW per rack, but can split
across racks if necessary

• Full bi-section bandwidth for each
group of 6 nodes

• 2:1 oversubscription between
groups of 6

up to 12 DGX-1 nodes

NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

MEDIUM CLUSTER

• Defines a DGX-1
“POD”

• Can be replicated
for greater scale,
ex: large cluster
configuration

• 6 racks, 6 nodes
per rack

• Larger IB director
switch (216 ports)
with capacity for
more pods via
unused ports

up to 36 DGX-1 nodes

NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

LARGE CLUSTER

• Implements 4 DGX-
1 pods

• Distributed across
24 racks

• Full bi-section
bandwidth within
pod, 2:1 between
pods

• Training jobs
ideally scheduled
within a pod, to
minimize inter-pod
traffic

up to 144 DGX-1 nodes (4 ”PODS”)

DGX-1 DEEP
LEARNING
DATA
CENTER

Reference
Architecture

NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

“A-HA” MOMENTS IN DL CLUSTER DESIGN
Additional design insights to get you started

Overall Cluster Rack Design Networking Storage Facilities Software

• HPC similar to

DL

• HPC expertise

can help in
design

• Even with HPC,
the similarities

are limited

• DL drives close

to operational
limits;

• Assume less
headroom

• Proper airflow is
crucial to cluster

performance

• Like HPC,

InfiniBand is
preferred

• high bandwidth,
low latency

• Maximize per-
node IB

connections

• Datasets range

from 10k’s to
millions objects

• Petabyte levels
of storage

• Large variance

• 90:1 Read:Write

• GPU data center

operates at
near-max power

• Assume higher
watts per-rack

than most
enterprise
datacenter

• dramatically

higher
FLOPS/watt =
floorspace saved

• Scale requires

“cluster-aware”
software

• NCCL2 =
GPU/multi-node

acceleration

• Automatic

topology detect

• DL framework
optimizations

TRAINING AT (MEDIUM) SCALE

Data parallel training*

Asynchronous stochastic gradient descent

Model parallel training*

Hybrid parallel training*

Hyperparameter sweep

Ensemble/MoE training

Or, how does one make use of 1024 GPUs?

*One Weird Trick For Parallelizing Convolutional Neural Networks
https://arxiv.org/abs/1404.5997

DATA PARALLEL

DNN TRAINING ON MULTIPLE GPUS
Making DL training times shorter

parameters

batch

gradients

local gradients

parameters

batch

gradients

local gradients

parameters

batch

gradients

local gradients

Allreduce : Sum gradients across GPUs

parameters

batch

gradients

local gradients

Data parallelism : split batch across multiple GPUs

IMPLEMENTATIONS

AlexNet – “2 Tower” to run on 2GPUs – 2012

BVLC Caffe – We implemented a tree based reduction in 2014. Good perf on 2 GPUs
and DevBox1 shipped with implementation tuned for 4. Didn’t scale well beyond 4
Maxwells

NV-Caffe – NCCL integration, basis for DGX1 performance

Now in every major framework

DATA PARALLEL AND NCCL

NCCL uses rings to move data across all GPUs and perform reductions.
Ring Allreduce is bandwidth optimal and adapts to many topologies

DGX-1 : 4 unidirectional rings

NCCL PERFORMANCE
Intra-node performance

0

10

20

30

40

50

60

70

4 QPI 4 CPU 4 PCI DGX-1 DGX-1V

Allreduce Bandwidth (OMB, size=128MB, in GB/s)

5
8

12

132

62

DATA PARALLEL AND LARGE BATCH SIZES

NCCL 2.0

Inter-node communication using Sockets or Infiniband verbs, with multi-rail support,
topology detection and automatic use of GPU Direct RDMA.

Optimal combination of NVLink, PCI and network interfaces to maximize bandwidth and
create rings across nodes.

Inter-node communication

PCIe, Infiniband DGX-1 : NVLink, 4x Infiniband

PERFORMANCE
Inter-node performance

0

5

10

15

20

25

30

35

40

45

2 nodes x 4 GPUs (IB EDR, PCI Switch) 4 nodes x 8 GPUs (DGX-1 : 4x IB EDR, 4x NVLink)

AllReduce bandwidth (OMB, size=128MB, in GB/s)

MPI

Baidu Allreduce

NCCL

42

11

7

2.4
0.9

6

PERFORMANCE
Deep Learning - CNTK

0

1000

2000

3000

4000

5000

6000

7000

8000

0 8 16 24 32

CNTK scaling
ResNet50, images/s

Ideal

MPI

NCCL

217

1684

3281

6569

1645 1744

3360

nGPUs (GP100)

NUMERICS ARE HARD WITH LARGE BATCH

DIFFICULTIES OF LARGE-BATCH TRAINING
It’s difficult to keep the test accuracy, while increasing batch size.

Current recipe[Goyal, 2017]:

a linear scaling of learning rate 𝛾 as a function of batch size B

a learning rate “warm-up” to prevent divergence during initial training phase

Resnet-50

Optimization is not a problem if you get

right hyper-parameters
Priya Goyal, Accurate, Large Minibatch SGD:

Training ImageNet in 1 Hour, 2017

35

RESNET-50 WITH LARS: B 32K
36

More details on LARS in our paper: https://arxiv.org/abs/1708.03888

https://arxiv.org/abs/1708.03888

SUMMARY
1) The key difficulties in large batch training is numerical optimization

2) The existing approach, based on using large learning rates, can lead to
divergence, especially during the initial phase, even with warm-up

3) With “Layer-wise Adaptive Rate Scaling”(LARS) we scaled up Resnet-50 to B=16K

4) Even with LARS and warm-up we couldn’t increase LR farther for very large
batches. To keep the accuracy we have to increase the number of epochs

5) For Volta efficiency we currently need 128 batch per GPU = 64-128 node limit

37

ASYNCHRONOUS SGD – A BRIEF TANGENT

Frequently uses a parameter server

Can update out of phase

Complex numerical behavior

Non-reproducible results

Large reduction in required bandwidth

Somewhat common inside some CSPs

Generally Data Parallel

MODEL PARALLEL

MODEL PARALLELISM

Suppose the “layer” is 128x128.

If we spatially partition onto 4 GPUs, then each GPU gets a
64x64 spatial “chunk” of the layer.

Domain decomposition in HPC speak

GPU1 GPU2

GPU3 GPU4

64 px

MODEL PARALLELISM

However, if on each GPU we evaluate a 3x3 convolution, we
also need to access data from adjacent spatial chunks.

For example, one 3x3 conv with stride 1 has an effective
receptive field width of +1 pixel on each side.

So somehow each GPU needs to be able to see data from
adjacent spatial chunks on the other GPUs.

64 + 1 px

GPU1 GPU2

GPU3 GPU4

MULTI-GPU MEMORY ACCESS

The prototype implementation of the spatial exchange
on current HW consists of a few steps:

1. Define a multi-GPU tensor representation

2. Replace packed single-GPU tensors with padded,
spatially partitioned multi-GPU tensors

3. Exchange boundary data between spatially adjacent
padded tensors using an explicit communication kernel

4. Use the padded tensors as explicitly padded inputs to
convolutions

64 + 1 + 1 px

GPU1 GPU2

GPU3 GPU4

SUMMARY

We can split layers across GPUs in several ways

Allows for larger models if we can treat as “GPU SMP’

Scaling at 16 GPUs looks good, but worried about having enough work per GPU at
scale with a ResNet-50 like network

Working on improvements to memory model over NVLink

HOW ABOUT A BIT OF BOTH?

HOW TO GO REALLY BIG?
OR I HAVE $100M TO DEVOTE TO A SINGLE ENGINEER/PROJECT

ENSEMBLE/MOE TRAINING

Common in massive scale training

Train many models at once in search of design and hyperparameter space

Hyperparam space is O(100) variables

Network design space is O(1000) variables

Train lots of different models

Ensemble

Mixture of Experts

“Learning to Learn” -
https://arxiv.org/pdf/1606.04474.pdf

“Outrageously Large Neural Networks:
The Sparsely-Gated Mixture-of-Experts Layer” -

https://arxiv.org/pdf/1606.04474.pdf

SUMMARY

• We have several potential paths for scaling

• Good evidence CNNs will work – see NERSC Gordon Bell Submission

• RNNs look harder as they don’t like large batch and LARS doesn’t work, yet

• Implementation across all frameworks a huge lift

• Infrastructure

• Need to clean up container support for Infiniband to work nicely

• Failover support

• Really need a new type of IO hierarchy

• SW

• Multi-node model parallel techniques

• Solver/numerical studies and support for massive scale

Where we need help

