Communication Quantization for Data-parallel Training of Deep Neural Networks

MLHPC 2016

November 14, 2016

Nikoli Dryden1,3, Tim Moon2,3, Sam Ade Jacobs3, Brian Van Essen3

1 University of Illinois at Urbana-Champaign
2 Stanford University
3 Lawrence Livermore National Laboratory
Motivation

- Training DNNs is very intensive
- Datasets continue to become larger and larger
- Let’s try to take advantage of HPC resources
Summary

- Quantize gradient updates and use a custom communication algorithm
 - Reduces bandwidth during data-parallel training
- Outperform baseline for large layers (1.76x)
- Code available: https://github.com/LLNL/lbann
Model Replica 0

Model M₀ - Layer H₁

Model M₀ - Layer H₀

Model M₀ - Input Layer

Peer-wise communication

Rank 0 - N₀ Rank 1 - N₁ Rank 2 - N₂ Rank 3 - N₃

Input Data Partition 0 from Lustre

DP₀ MB₀ DP₀ MB₁ DP₀ MB₂ DP₀ MB₃

Model Replica 1

Model M₁ - Layer H₁

Model M₁ - Layer H₀

Model M₁ - Input Layer

Rank 0 - N₄ Rank 1 - N₅ Rank 2 - N₆ Rank 3 - N₇

Input Data Partition 1 from Lustre

DP₁ MB₀ DP₁ MB₁ DP₁ MB₂ DP₁ MB₃
Why is this hard?

- Communication-computation imbalance
 - You spend more time communicating than doing useful work!
 - Bandwidth-dominated regime
- Existing work more focused on heterogeneous cloud infrastructure, not HPC
Quantization

- Map a large set of values to a smaller set
- Quantized data is reconstructed using a pre-computed dictionary
- Introduces some amount of quantization error
- In our case: map 32-bit floats (gradient updates) to 1 bit
Quantization algorithms

- Trade increased (local) computation for reduced data movement

- Existing approaches:
 - One-bit quantization [F. Seide et al. 1-bit stochastic gradient descent and its application to data-parallel distributed training of speech DNNs. INTERSPEECH 2014]
 - Threshold quantization [N. Strom. Scalable distributed DNN training using commodity GPU cloud computing. INTERSPEECH 2015]

- New: Adaptive quantization
One-bit quantization

- Aggressively quantize every update to 1 bit
- Compute column-wise means of non-negative/negative gradient updates
 - Gradient updates $\geq 0 \rightarrow \mu^+$
 - Gradient updates $< 0 \rightarrow \mu^-$
- Encoded as a 0 or 1 bit, data volume reduced 32x with packing
- Introduces error feedback to correct quantization error
One-bit quantization: visual

<table>
<thead>
<tr>
<th>Neurons</th>
<th>µ⁺ / µ⁻</th>
</tr>
</thead>
<tbody>
<tr>
<td>dW₀,₀</td>
<td>...</td>
</tr>
<tr>
<td>dW₁,₀</td>
<td></td>
</tr>
<tr>
<td>dW₂,₀</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>
Error feedback

- Aggressive quantization introduces error
 - Ignoring it leads to poor models or divergence
- Instead retain the quantization error locally and add it to the gradient updates in the next mini-batch before quantization
- Ensures the full gradient signal is—eventually—used, just over multiple updates
Threshold quantization

- Instead of sending every update, send only the largest
- User chooses a fixed threshold \(\tau \) in advance
- Gradient updates \(\geq \tau \rightarrow \tau \)
 Gradient updates \(\leq -\tau \rightarrow -\tau \)
- Encoded as 0 or 1 bit
- Error feedback used to reduce error
- Other updates are fed into error feedback but not used
- Updates are now sparse: each quantized gradient is sent as a 31-bit index and a 1-bit quantized value
Threshold quantization: visual
Adaptive quantization

- Motivation
 1. Threshold quantization can be fast with a good τ
 2. ... But τ is hard to choose in practice
 3. ... And $\tau/-\tau$ are not great reconstruction values
 4. One-bit quantization seems to be more consistent
 5. And has no parameters to choose

- Adaptive quantization tries to get the best of both worlds
Adaptive quantization

- User chooses a fixed proportion of updates to send
- Algorithm determines the appropriate thresholds τ^+, τ^- to achieve this
 - Then determines the mean μ^+ of the updates greater than τ^+ and the mean μ^- of the updates less than τ^-
- Gradient updates $\geq \tau^+ \rightarrow \mu^+$
 Gradient updates $< \tau^- \rightarrow \mu^-$
- Error feedback used to reduce error
- Updates are sparse and use the same format as threshold quantization
Additional optimizations

- One-bit and adaptive:
 - Approximate some computations using random sampling
- Threshold and adaptive:
 - Delta and Golomb-Rice coding for additional compression to reduce data volume
Allreduce

- Key communication operation for updates
- MPI_Allreduce is good in theory, but not in practice
 - Uses default algorithm with custom datatypes
 - Troublesome to associate reconstruction dictionaries
 - Does not handle changing data sizes well
- Implement using pairwise exchange reduce-scatter then ring-based allgather
 - $O\left(\frac{(p-1)}{p}nB\right)$ versus $O(n\log(p)B)$ (default) bandwidth
- [R. Thakur et al. “Optimization of collective communication operations in MPICH.” IJHPC, 2005]
Quantization benchmark

- Uniformly random square matrices
- 128 nodes, 2 processes/node
- Simulates gradient updates with 128-way data parallelism
- Adaptive quantization superior for large matrices: 1.76x faster for largest matrix
Test setup

- MNIST handwritten digit dataset
- 3 4096-neuron fully-connected hidden layers
 - ReLU activations
 - Adagrad optimizer
- 16 nodes, 192 ranks
 - 4-way data parallelism
 - 48-way model parallelism
Data volume reduction

- Bytes sent in each mini-batch during training
- Adaptive quantization closely follows one-bit quantization (expected)
- Threshold quantization is degenerate and sends very little data (using best \(\tau \) we found)
Communication time

- Total time spent in the allreduce in each mini-batch
- Times in line with the quantization benchmark
- Threshold quantization sends very little data, so is much faster
Accuracy

- Important that quantization does not degrade accuracy
- Normal, one-bit, and adaptive quantization lead to comparable accuracies
- Threshold accuracy is comparable to that of a single model replica

<table>
<thead>
<tr>
<th></th>
<th>Test accuracy (%) after 20 epochs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>98.51</td>
</tr>
<tr>
<td>One-bit</td>
<td>98.49</td>
</tr>
<tr>
<td>Threshold</td>
<td>98.12</td>
</tr>
<tr>
<td>Adaptive</td>
<td>98.53</td>
</tr>
</tbody>
</table>
Layer scaling

- Increase neurons in each layer: 1.18x faster for largest layer
 - Validates the quantization benchmark in a more realistic training situation
- Adaptive quantization has the advantage for larger problems
Discussion

- Bandwidth reduction through quantization and custom communication routines help scale data parallel training
- Adaptive quantization is fast and easy to tune
- Next steps:
 - Further optimization
 - Convolutional layers and GPUs
 - Larger datasets (ImageNet)