Exploiting Criticality on HRL’s “Latigo” Neuromorphic Device

Nigel Stepp, Praveen Pilly, José Cruz-Albrecht

ndstepp@hrl.com

HRL Laboratories, LLC
Malibu, CA
Simple or Complex?
- Trade-offs lead to designs with many simple neurons, or a few complex ones
- HRL, in DARPA SyNAPSE, chose complexity over multiplicity
- Scaling up from there is likely easier

HRL’s first real chip – “Surfrider”:
- 576 Neurons, 37k Synapses
- Axonal delays
- Synaptic kinetics
- Spike Timing Dependent Plasticity
- Again, complexity over scale
Reservoir computing provides a way to use a small network for relatively complex applications:

Pattern Recognition
- Audio
- Video
- Mobile sensor

Anomaly Detection

23 Inputs
300 Excitatory Neurons
1% Random Connectivity

25 Inhibitory Neurons
50 Outputs
Reservoir computing methods using Surfrider were especially successful for spectral data.
Summary of Surfrider Results

Image data is also usable, but only at extremely low resolutions.

Take 23 pixels
Neuromorphic Computing at HRL
Latigo Chip

"Latigo" contains 1024 neurons, 131k synapses
- Increase from 96 I/Os to at least 512 – Thousands with additional board dev
- Each neuron has local parameters
- New features: Short term potentiation, homeostatic plasticity
- Intrinsic support for chip tiling

Neurobiological dynamics while maintaining low size, weight, and power
What Can These Features Do?

The combination of STDP (excitatory and inhibitory) and STP allows self-tuning critical dynamics.

Parameter search finds networks that dynamically balance activity to remain in a critical state.

A single high-level parameter search can find networks that look generally useful.

Exploiting self-tuning criticality in hardware gets around application specifics
- With lots of complex features, parameter space is large and not smooth
 - Latigo has 4 STDP, 4 STP and 2 HP parameters at every neuron
 - Also voltage thresholds and synaptic time-constants
- A general set-point means one-time parameter tuning

Criticality on Latigo?

Avalanche sizes are consistent with a power-law
- Small avalanches are near critical branching exponent -1.5
- Larger avalanches fall near -1, literal 1/f
- Consistent with Stepp et al (2015) – input causes deviation from criticality, but self-tuning force is still present

Self-tuning criticality is achievable on the Latigo hardware
The central claim of Srinivasa et al (2015) is that self-tuning criticality is general purpose.

Here we apply the critical network to an intrusion detection problem:

The self-tuning critical reservoir is able to perform well without problem-specific tuning.
Advanced neurobiological features support complex dynamics in neuromorphic hardware.

Complex behavior such as criticality and self-organization promise non-algorithmic solutions where algorithms are hard to write, e.g.
- Problem agnostic parameter tuning
- Adaptable inverse kinematics

When contained in extremely low SWAP hardware, these features enable capabilities on small or unattended platforms beyond simpler neuromorphic systems.