Glia:
not just brain “glue”

Cindy V. Leiton, PhD.
Postdoctoral Associate
Departments of Anesthesiology & Pathology
Stony Brook University
How do synapses function?
Neuronal function requires short and long term processes:

In the short term (ms to s):
- Key proteins are activated
- Local signals will respond to stimuli
- Signal cascades will get activated
- Factors will turn on gene expression
- Neurotransmitter release and uptake
- “Reset” of the system

In the long term (min to hr):
- New proteins and structures will be made
 - Increase in
 - The physical size and structure of the terminal
 - The density of receptors at the terminal
 - Response speed and sensitivity

How is synaptic function regulated?
Brains are not made up of just neurons.
Just like

Cars are not just engines
Well, what are brains, then?
Brain: A conglomerate of many different types of cells, working together to perform our cognitive functions.

Neurons and synapses

Blood vessels
Immune cells
Glial cells
Stem cells
Etc.

Up to 90% NOT neurons
Brain: A conglomerate of many different types of cells, working together to perform our cognitive functions.

Up to 90% NOT neurons
How do all of these pieces make up such an efficient “machine”?
The resource highway

- Blood
- Oxygen
- Nutrients (ex. Glucose)
- Immune cells (peripheral)
- Hormones
- Drugs
- Toxins
- Infectious agents
Cerebral vessels are intimately associated with astroglial cells.
Astrocytes support synaptic function in many ways

- **Provide sources of energy for neurons**
- Secrete hormones to support overall neuronal health
- Control ions and neuronal excitability by:
 - Buffering potassium
 - Regulating extracellular pH
 - Recycling neurotransmitters (Ex. glutamate, GABA)
 - Supplying building blocks for neurotransmitters
 - Releasing ‘gliotransmitters’
 - Expressing contact-mediated factors that influence synapse maturation
Are astrocytes the only glial cell type?

No.
Oligodendrocytes myelinate & support the CNS

Oligodendrocytes extend “processes” that contact axons and wrap around them to form a myelin sheath.

The myelin sheaths provide:
- Fast, **saltatory conduction** of nerve transmission
 - Signal fidelity over long distances
 - Maintenance of neuronal viability
 - Architectural and structural support

Siegel, GJ et al., Basic Neurochem. 1999
Is the function of these perfectly formed layers only to insulate and increase/protect conduction?
• “Feed” neurons energy metabolites to maintain axon efficient

• Secrete hormones, growth factors, and MANY factors that influence neuronal health
How is the system kept “in-check”?
“Pruning”

Stimuli

Tagging

Recognition & degradation
Microglia clean, build and maintain the CNS
Acknowledgements

Oak Ridge National Laboratory
Neuromorphic Computing
Workshop Organizing Committee
& Participants

Robinson Pino
Catherine D. Schuman
Tom Potok
Angie R. Scott

Department of Energy

Floyd Lab
Thomas Floyd
Alissa Cutrone
Dania Malik
Kennelia Mellanson
Adriana DiBua
Ryan Lamm
Betsy Cohen

SBU Center for Inclusive Education
AGEP-T FRAME Postdoctoral Fellowship (NSF funded)

Colognato Lab
Aguirre Lab
Tsirka Lab
The SBU Glia Club

The Society of Hispanic Professional Engineers
Professional (NYC) & Student (SBU) chapters

Society for Neuroscience
Neuroscience Scholar’s Program
Some helpful references:

• Blood vessels:
 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3206737/
 http://neuroscience.uth.tmc.edu/s4/chapter11.html
 http://www.nature.com/nrn/journal/v7/n1/full/nrn1824.html

• Astrocytes:
 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2894949/
 http://www.nature.com/neuro/journal/v18/n7/full/nn.4043.html
 http://www.nature.com/nrn/journal/v14/n5/full/nrn3484.html
 http://www.antanitus.com/
Some helpful references:

Tiling:

Modeling:
Book: Biophysically based Computational Models of Astrocyte ~ Neuron Coupling and their Functional Significance

Pruning:

NG2 Glia form synapses with Neurons:
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3130155/