
ORNL is managed by UT-Battelle  
for the US Department of Energy 

Roadmap for 
Neuromorphic 
Computing:  
A Computer Science 
Perspective 

Catherine Schuman 
Liane Russell Early Career Fellow 

Computational Data Analytics 



2 Roadmap for Neuromorphic Computing: A Computer Science Perspective 

Overview 

•  Introduction 
• Major Research Questions: 

– What are the computational primitives? 
– What degree of programmability is required at the device 

level? 
–  How do we program neuromorphic computers? 
–  How do we make neuromorphic systems more usable 

and accessible? 
– What applications are most appropriate for neuromorphic 

computers? 

• Conclusions 



3 Roadmap for Neuromorphic Computing: A Computer Science Perspective 

Neuromorphic Computing Community 

Biology Computing Devices Materials 

Inspires Informs 
Implemented using 
or integrated with 

Restricts/
Enables 

Illuminates Informs 

Computing 



What are the computational 
primitives? 



5 Roadmap for Neuromorphic Computing: A Computer Science Perspective 

Neuron/Synapse Model Choices 

Hodgkin-Huxley 

Izhikevich 

Leaky Integrate and Fire 

Traditional Perceptron 

NIDA 



6 Roadmap for Neuromorphic Computing: A Computer Science Perspective 

Example: Neuroscience-Inspired 
Dynamic Architecture (NIDA) 

• Spiking neural network embedded in 3D space. 
• Simple neuron and synapse implementation. 
• Flexible structure.  

Input&Neuron&

Output&Neuron&

Hidden&&Neurons&

Excitatory&Synapse&

Inhibitory&Synapse&

Threshold)

Charge)

Return)to)neutral)charge)

Firing)Time) Time)

Firing)Neuron)

Neuron)

Change6in6)
Charge)Event)

Incoming))
Synapse)

Outgoing)
Synapse)

Charge)Increase)due)to)
Change6in6Charge)Event)

Firing)Time)
t) t) t) t)

(No)elapsed)?me))



7 Roadmap for Neuromorphic Computing: A Computer Science Perspective 

Open Questions 

• What neuron and synapse models are most 
appropriate? 
–  Are they application specific? 

• What effect does the selection of the computational 
primitives have on programmability? 

• How biologically-accurate should the models be? 
• How does the choice of model/computational 

primitive affect the programming method or 
algorithm? 

• How does the chosen device/material affect the 
choice of computational primitives? 



What degree of programmability 
is required at the device level? 



Programmability at Device Levels 

Programmability 
Fixed Flexible 

Parameters Connectivity 
Patterns 

Number/
Placement of 
Neurons and 

Synapses 

Neuron and 
Synapse 
Models 



Programmability at Device Levels 

Programmability 

Programming Difficulty 

Fixed Flexible 

Application Space 

DANNA 



11 Roadmap for Neuromorphic Computing: A Computer Science Perspective 

Example: Dynamic Adaptive Neural 
Network Array (DANNA) 
• Array of programmable 

neuromorphic elements. 
• Elements can connect to up 

to 16 neighbors. 
• Current: FPGA. 
• Future: VLSI, memristors. 



12 Roadmap for Neuromorphic Computing: A Computer Science Perspective 

Open Questions 
• Do neuromorphic devices for different applications 

need varying levels of programmability? 
• What elements need to be programmable? 

–  Parameters 
–  Connectivity patterns 
–  Structure (number of neurons and synapses) 

• How does programmability affect the model 
selection? 

• What is the impact of device programmability on the 
programming and training algorithms? 

• What device types and materials enable 
programmability? 

  



How do we program 
neuromorphic computers? 



14 Roadmap for Neuromorphic Computing: A Computer Science Perspective 

Programming: 
Manual 

programming 

Learning: 
Unsupervised 

learning 

Training: 
Supervised 

learning 

Training/Learning/Programming 



15 Roadmap for Neuromorphic Computing: A Computer Science Perspective 

Training/Learning/Programming 

Conv Net Image Source: https://devblogs.nvidia.com/parallelforall/deep-learning-nutshell-core-concepts/ 

Spiking  
Neuromorphic  

Device 

State-of-the-Art Deep Learning Networks 
(Trained) 

Forced translation 
(Programmed) 

•  Does not use the device 
in training. 

•  Does not train directly for 
the device. 



16 Roadmap for Neuromorphic Computing: A Computer Science Perspective 

Example Training/Design:  
Evolutionary Optimization 



17 Roadmap for Neuromorphic Computing: A Computer Science Perspective 

Spiking  
Neuromorphic  

Device 

Example Training/Design:  
Evolutionary Optimization 

Application 
Simulation 

Engine 



18 Roadmap for Neuromorphic Computing: A Computer Science Perspective 

Spiking  
Neuromorphic  

Device 

Example Training/Design:  
Evolutionary Optimization 

Application 
Simulation 

Engine 

1.5 



19 Roadmap for Neuromorphic Computing: A Computer Science Perspective 

Spiking  
Neuromorphic  

Device 

Example Training/Design:  
Evolutionary Optimization 

Application 
Simulation 

Engine 

1.5 

4 



20 Roadmap for Neuromorphic Computing: A Computer Science Perspective 

Spiking  
Neuromorphic  

Device 

Example Training/Design:  
Evolutionary Optimization 

Application 
Simulation 

Engine 

1.5 

4 

2 



21 Roadmap for Neuromorphic Computing: A Computer Science Perspective 

Spiking  
Neuromorphic  

Device 

Example Training/Design:  
Evolutionary Optimization 

Application 
Simulation 

Engine 

1.5 

4 

2.5 

1 



22 Roadmap for Neuromorphic Computing: A Computer Science Perspective 

Example Training/Design:  
Evolutionary Optimization 1.5 

4 

2.5 

1 



23 Roadmap for Neuromorphic Computing: A Computer Science Perspective 

Example Training/Design:  
Evolutionary Optimization 

1.5 

4 

2.5 

1 

Next Generation 



24 Roadmap for Neuromorphic Computing: A Computer Science Perspective 

Open Questions 
•  What are the tradeoffs between programming, training, and 

learning? 

•  How important is on-chip learning vs. off-chip learning? 

•  How important is on-line learning? 

•  Which biologically-inspired learning mechanisms are important for 
learning? 
–  Spike-timing dependent plasticity, neurogenesis, 

neuromodulation. 

•  Which optimization methods are appropriate for training? 
–  Gradient-based methods, evolutionary optimization. 

•  How does model selection influence the programming method? 



How do we make neuromorphic 
systems usable and 

accessible? 



Use Cases 

Sensor Neuromorphic 
Processor 

Autonomous Vehicle, Sensor 
(Embedded System) 

Control 
Mechanism 

Traditional von Neumann Architecture 

Neuromorphic GPUs Quantum 
Other 

Emerging 
Architectures 

•  Highly customized. 
•  Application-specific 

communications. 
•  Pre-training/learning. 
•  On-chip and on-line 

learning. 

•  More programmable. 
•  More flexible 

programming 
mechanisms. 

•  Flexible and adaptable 
communication 
schemes. 



27 Roadmap for Neuromorphic Computing: A Computer Science Perspective 

DANNA Software Components 

Application DANNA Commander 

EO Visualization 

DANNA Simulator 

Supporting Software 



28 Roadmap for Neuromorphic Computing: A Computer Science Perspective 

Open Questions 

Embedded 
Application 

Neuromorphic 
System 

Training? 

Supporting Software 

Programming? 

User interface? 

Debuggers? 

Compilers? 

Visualization? 

Communication 
Layer? 

Co-Processor 
Application 



What applications are most 
appropriate for neuromorphic 

computers? 



Applications 

•  Spatiotemporal 
Classification 
•  Complex scientific data sets 

•  Control 

Neural 
Network 

Applications 

•  Neuroscience simulation 
studies 

Biological 
Simulation 

Applications 

•  Graph algorithms 
•  Scientific simulations 

Non-
Traditional 

Applications 

D
E
V
I
C
E 
P
R
O
G
R
A
M
M
A
B
I
L
I
T
Y 

PROGRAMMING/TRAINING/LEARNING METHODS 

S
U
P
P
O
R
T
I
N
G 
S
O
F
T
W
A
R
E 

COMPUTATIONAL PRIMITIVES 



31 Roadmap for Neuromorphic Computing: A Computer Science Perspective 

Control: Pole Balancing 



32 Roadmap for Neuromorphic Computing: A Computer Science Perspective 

Control: One-Dimensional Navigation 



33 Roadmap for Neuromorphic Computing: A Computer Science Perspective 

Classification: Language Identification 



34 Roadmap for Neuromorphic Computing: A Computer Science Perspective 

Open Questions 
• What are the “killer apps”? 

– Which applications fully utilize and showcase the 
capabilities of neuromorphic systems? 

• What can neuromorphic systems do (theoretically)? 
• What should neuromorphic systems do 

(practically)? 
• To what extent should there be different types of 

neuromorphic implementations for different 
applications? 

• How do computational primitives, device 
programmability, programming methods, and 
supporting software restrict/enable applications? 



35 Roadmap for Neuromorphic Computing: A Computer Science Perspective 

Moving Forward 
• Large-scale software simulations (amenable for 

HPCs) are key for studying neuromorphic systems. 
–  Study computational primitives. 
–  Study device programmability implications. 
–  Study programming/training/learning methods. 

• Compare neuromorphic models and devices: 
–  Definition of common metrics. 
–  Definition of a diverse set of benchmark applications. 

•  Spatiotemporal data sets. 
•  Control simulations. 

• Development of supporting software and systems is 
key for usability and accessibility. 
–  Can be developed alongside simulations! 



36 Roadmap for Neuromorphic Computing: A Computer Science Perspective 

Why DOE?  Scientific User Facilities 

• Access to world-class HPC systems. 
–  Researchers who know how to build large-scale 

simulation systems and supporting software. 

• Access to world-class materials science user 
facilities. 



37 Roadmap for Neuromorphic Computing: A Computer Science Perspective 

Why DOE?  People 
• Collaboration opportunities with materials science 

and device researchers (at both national labs and 
affiliated universities).  



38 Roadmap for Neuromorphic Computing: A Computer Science Perspective 

Why DOE?  Applications 

• Widening the scope of potential applications for 
neuromorphic computing to include world-class 
science problems. 
–  Climate 
–  Nuclear 
– Medical 
– Materials science 



39 Roadmap for Neuromorphic Computing: A Computer Science Perspective 

Summary 
• There are many fundamental questions associated 

with neuromorphic computing even within computer 
science. 
– What are the computational primitives? 
– What degree of programmability is required at the device 

level? 
–  How do we program neuromorphic computers? 
–  How do we make neuromorphic systems more usable 

and accessible? 
– What applications are most appropriate for neuromorphic 

computers? 

• DOE is poised to address these questions. 



40 Roadmap for Neuromorphic Computing: A Computer Science Perspective 

Workshop Agenda and Goals 

• What are the fundamental computing questions 
that need to be addressed in order for neuromorphic 
computing to be successful as a new architecture? 

Wednesday 

•  Short 
Breakout 
Sessions 
•  Architectures 
•  Algorithms 
•  Applications 

Thursday 

•  Presentations 
•  Panel 

Discussion 

Friday 

•  Breakout 
Sessions 



Thank You! 

Email: schumancd@ornl.gov 


