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Retrospective - SyNAPSE 
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Hardware

Architecture 

Simulation

Environment

CMOS based 
electronic neuronal 

circuitry

Neuro-anatomically inspired electronic architecture 
e.g. spiking neural network with activity dependent 

synaptic plasticity and network connectivity

Neuromorphic 
circuit design and 

large-scale 
simulation for 

system validation 
and functional 

testing. 

Virtual, scalable environment to train, test, evaluate 
and benchmark electronic neural systems’ ability to 

sense, learn, adapt, and respond 
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SyNAPSE Program Approach



• Distributing large amounts of memory (synapses) among many processors 
(neurons) on a single chip.

• Off-chip memory burns power and taxes memory bandwidth

• DRAM needs large array sizes to be space efficient and does not integrate into most logic 
processes

• Back end memory technologies (e.g. memristors, PCM) are immature and not available in SOA 
CMOS 

• Developing a scalable messaging (spiking) architecture.

• Selection of computational primitives (e.g. neuron and synapse models)

• Engineering for scale, space and power efficiency

• Creating a large-scale simulation capability that accurately models the 
neuromorphic hardware 

• Creating tools to develop and debug neural algorithms on the simulator and 
the neuromorphic hardware

• Writing the algorithms (including those that learn)

Key Technology Issues / Choices



• There are many, many ways to build a neuromorphic computer

• Although much can be leveraged from conventional computing technologies, 
building a neuromorphic computer requires a large investment in 
development tools

• Neuromorphic chip function can be replicated on a conventional computer, 
but with much lower efficiency.

• Biological scale networks are not only possible, but inevitable.

• The technology issues are challenging but surmountable.

• The time scale for developing a new memory technology and integrating it 
into SOA CMOS process is much longer than that needed to build a 
neuromorphic computer.

• The biggest current challenge in neuromorphic computing is creating the 
algorithms.

SyNAPSE – Miscellaneous Lessons Learned



Perspective - Neuromorphic Computing Today



• A neuromorphic computer is a machine comprising many simple processors / memory 
structures (e.g. neurons and synapses) communicating using simple messages (e.g. 
spikes).

• Neuromorphic computers are one “pole” in a continuum of repurposable computing 
architectures

• Neuromorphic algorithms emphasize the temporal interaction among the processing 
and the memory.

• Every message has a time stamp (explicit or implicit)

• Computation is often largely event-driven

What is a Neuromorphic Computer?

I think of neuromorphic computers as a kind of “dynamical” computer in which the 
algorithms involve complex spatio-temporal dynamics on the computing hardware.

Von Neumann
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AsynchronousSingle Core Multicore GPU FPGA Neuromorphic



Manchester University - SpiNNaker

Steve Furber, “To Build a Brain” , IEEE Spectrum, August 2012
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IBM – “True North”

Paul A Merolla et al., “A million spiking neuron integrated circuit with a scalable 
communication network and interface”, Science 345 (2014)

Router

Memory & Processor



HRL Labs – SyNAPSE Neuromorphic Architecture

S1

S2

S3

S4 N

Narayan Srinivasa and Jose M. Cruz-Albrecht, “Neuromorphic Adaptive Plastic 
Scalable Electronics”, IEEE PULSE, JANUARY/FEBRUARY 2012



HP Enterprise - DPE

• “Dot Product Engine”

• Memristor memory / computation

• HPE Cognitive Computing Toolkit (“CogX”)



University of Heidelberg – BrainScales / HBP

• Wafer scale neuromorphic architecture

• HBP - Neuromorphic Computing

• High-speed brain modeling



KnuEdge - KNUPATH

Hermosa chip with “LambdaFabric”



Google - TPU

• “Tensor Processing Unit”

• Deep Learning Accelerator

• Runs TensorFlow



Nvidia - GPU

• NVIDIA Tesla P100

• Deep Learning acceleration

• cuDNN



Movidius - VPU

Fathom Neural Compute Stick



UC Davis – 1000 Processor Chip



• Expressions of the technology today

• Goals and motivations are varied

• Hardware prototypes are appearing regularly

• Development tools are emerging

• Existing algorithms are being ported to the new hardware

• Applications and business models are uncertain

• Substantial (but disconnected) activity across large tech companies, startups, 
government labs and universities

Where is Neuromorphic Computing Today?

We have passed the “reasonability” and “feasibility” stages, have started the
“development” stage, and can foresee an upcoming “utility” stage.



• Deep learning algorithms are broken into “layers” and “steps”, so although 
the units may be neuromorphic, the system dynamics are not.

• Most of the multi-core hardware is still synchronous and optimized for 
problems that are easily parallelized.

• The most common benchmarks consist of static datasets and classification 
tasks (instead behaviors in a dynamic, real-world environment).

• We don’t have anything like general-purpose learning.

• The compute hardware does not operate close to any thermodynamic limit 
(as brains do). 

• We need more memory per compute element.

How “Neuromorphic” Are We?

Although we have made great progress and the field is rapidly evolving we 
still have a lot of room to improve.  We are not at the end of computing, we 
are at the beginning of a new paradigm.



Prospective - Technology Landscape



Technology Landscape
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Conceptual Landscape
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Algorithm Landscape
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• Although we have large brains we cannot (yet) program a neuromorphic 
computer very well.

• Our high level communication and thinking (language) seems to be composed of a 
large long-term memory and a small symbolic processing capability and this is what 
we use to design and build a (Von Neumann) computer

• The paradox is expressed in the many dualism of Von Neumann computation 
that become muddled / problematic in neuromorphic computing

• Hardware vs. Software

• Logic vs. Memory

• Computation vs. Communication

• Program vs. Data

• To me it suggests that

• We need to figure out how to write a new class of algorithms

• We are missing / unaware of some important basic concepts

• If learning is the answer, what is learning?

The Paradox of Programming a Neuromorphic Computer



Prospective – Framing the Opportunity



Build computers that learn and generalize in a broad variety of tasks, 
much as human brains are able to do, in order to employ them in 
applications that require (too much) human effort.

• This idea is at least 40 years old, yet we still don’t have these kinds 
of computers.

• We have become disillusioned with these ideas in the past because 
the proposition was not fulfilled (AI and neural net “winters”)

• The proposition is (very) popular again because

• Maturation of the computing industry

• The successful application of some machine learning techniques

• Interest and research on the brain 

Traditional neuromorphic / cognitive computing proposition



Neuromorphic / cognitive computing philosophy

Cognitive computing views the brain as a 

computer and thinking as the execution of 

algorithms.Cognition = 

computing

Memory = 

storage of 

data and 

algorithms

Thinking = 

application of 

algorithms to 

data

Artificial 

Intelligence 

(Cognitive 
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search

Artificial 
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• Biological memory corresponds to a container 

holding data and algorithms.  Learning fills the 

container with input-output rules defined on 

discrete (AI) or continuous (ANN) variables.  

• Algorithms create input-output mappings using 

rules or weights stored in memory.

• AI focuses on search algorithms to select 

“production” rules.

• ANN focuses on iterative error reduction 

algorithms to determine “weights” yielding the 

desired input-output relationships.

• Algorithms are created by humans.



• Machine learning refers to a collection of computational methods / algorithms 
that refine (typically) many parameters in order to associate an input dataset 
with a desired output.

• The algorithms optimize an internal objective function that is coupled to input 
datasets and (labeled) output associations.

• Algorithms have narrow domain of application and are typically tied to the 
datasets / benchmarks that they seek to represent.

• A machine learning algorithm is not a brain.  Humans are required to 
write the algorithms, provide the input datasets, and the output objectives.

What about Machine Learning?

Machine learning is a collection of powerful computational techniques for 
discovering statistical regularities in well-defined input datasets and associating 

them with well-defined outputs. 
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• A neuromorphic computer is another kind of repurposable computing 
platform like a CPU, GPU, FPGA, etc.

• A neuromorphic computer will be more / less efficient than another 
computing architecture depending on the algorithm

• Neuromorphic computers may be good choices for implementing some 
machine learning algorithms, but these should not be confused with brains

• A neuromorphic computer is not a brain. Although if we figure out how 
to create the intelligence that we associate with brains on a computer, a 
neuromorphic computer would likely be an efficient option.

Getting it Straight – Understanding Neuromorphic Computing



• In the early days of computing, thinking in terms of basic physical and 
philosophical ideas were common.

• In fact, there are numerous indications to make us believe that this new system of 
formal logic will move closer to another discipline which has been little linked in the 
past with logic. This is thermodynamics, primarily in the form it was received from 
Boltzmann, and is that part of theoretical physics which comes nearest in some of 
its aspects to manipulating and measuring information. – John Von Neumann 

• To suppose universal laws of nature capable of being apprehended by the mind and 
yet having no reason for their special forms, but standing inexplicable and irrational, 
is hardly a justifiable position. Uniformities are precisely the sort of facts that need 
to be accounted for. Law is par excellence the thing that wants a reason. Now the 
only possible way of accounting for the laws of nature, and for uniformity in general, 
is to suppose them results of evolution. - Charles Sanders Peirce

• The extraordinary integration and interdependence of the universe over massive 
spatial and temporal scale is a consequence of evolution from a common starting 
point and organizing principle.  We are part of this universe and our own intelligence 
is one manifestation of this principle. - TLH

• Understanding intelligence implies understanding even broader questions.  

• Today we lack the conceptual foundations to be proficient at building 
intelligent systems.

Getting it Straight - Understanding Intelligence



• Build computers using a large number of highly-distributed 
computational elements, embedded memory, and a reconfigurable 
messaging network in order to efficiently process algorithms having 
complex spatio-temporal dynamics, large data flow, and many 
adaptable parameters.

• In order to proficiently build intelligent systems, create an 
understanding of intelligence derived from basic principles and 
translate this understanding into all aspects of neuromorphic system 
development. 

Revised neuromorphic / cognitive computing proposition



Prospective – Goals for the Future



• Automobiles

• Phones, computers, tablets, etc.

• Large scale commercial, scientific, intelligence data analysis

• Massive, distributed sensor networks

• Commercial, consumer, industrial robotics

• Commercial, consumer, industrial IoT (21B devices projected by 2020)

• Smart grids / cities / buildings / factories

• Cyber security

• Cyber warfare

• Autonomous defense systems and networks (UAV, UGV, UUV…)

• Everything with lots of data…

Potential Application Domains of Neuromorphic Computing

The application domain is enormous but also poorly realized because the 
necessary technologies do not yet exist.



• Can we build a simulator that supports different neuromorphic architectures?

• Can we build tools to map algorithms to those architectures?

• Can we estimate the architecture / algorithm performance in hardware?

• Can we create a suite of benchmarks to test the relative strengths and 
weaknesses a neuromorphic computing approach?

• Can we build high density memories local to the processing elements in/on 
state-of-the-art CMOS?

• Can we move beyond our current step-at-a-time thinking to programming?

• Can we create a general purpose learning methodology?

• Can we develop the conceptual foundations of intelligence?

• Can we leverage industry, academic and government laboratory efforts?

• Can we make neuromorphic computing a strategic, national priority?

• Can we invest in both short term opportunities and long term objectives?

Challenges / goals for the future



• The maturation of the current computing technology invites disruption by 
new ideas

• The applications of the future require a neuromorphic computing solution.

• Neuromorphic computing and the motivation to build intelligent systems from 
them will not only create massive economic and societal benefit, but will also 
create a new understanding of ourselves and, thereby, transform all human 
endeavor and experience.

Why I am Bullish
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• The end of Moore’s Law portends a paradigm shift offering both disruption and opportunity

• The massive, on-going accumulation of data everywhere is an untapped source of wealth and well-
being for the nation

• The need for on-line, adaptive, autonomous systems in conventional and cyber warfare

• The threat of large, nation-state adversaries gaining prominent capabilities – “Sputnik”

• The ubiquitous availability of computing resource and training for those interested in developing 
neuromorphic computing / machine learning technology gives many the opportunity to disrupt

• The likelihood of breakthroughs in fundamental science driven by the quest for neuromorphic 
computing and its ultimate realization

• The commercial sector will not invest in the early stages of a paradigm shifting technology

• E.g. deep learning did not originate in Silicon Valley with Venture funding, it is the product of decades of 
government funded R&D (as is virtually every other game-changing computer technology).

• Silicon Valley exists because the US DoD and NASA funded the development and bought the products of the 
nascent semiconductor industry in the 1950s.   

• Government applications are different than commercial applications, so many government needs 
will not be met if they rely on technology derived from commercial products

• The long-term economic return of government investment in neuromorphic computing will likely 
dwarf other investments that the government might make

• The government’s long history of successful investment in computing technology (probably the 
most valuable investment in history) is a proven case study that is relevant to the opportunity in 
neuromorphic computing

Why the government should invest


