Bringing Physical Dimensions to Neuromorphic Computing

Farinaz Koushanfar¹ and Tinoosh Mohsenin²

¹ Professor of ECE, University of California San Diego (UCSD)

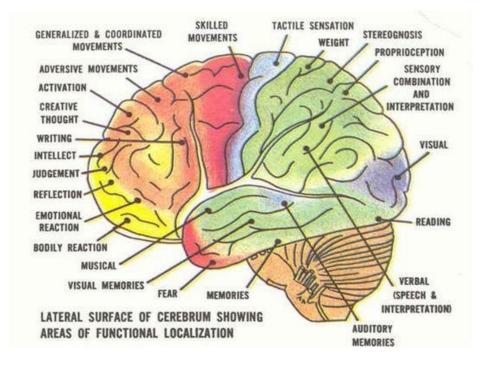
²Assistant Professor of CSEE, University of Maryland Baltimore County (UMBC)

Outline

- Motivation brain
- Brain-inspired computing
- Suggested architecture/algorithm research thrusts
 - Holistic performance-driven dimensionality reduction
 - System and network topology
 - Access architecture and order
 - Automation

Human brain?

- The biggest marvel of all!
- How can we learn from and mimic the human brain?



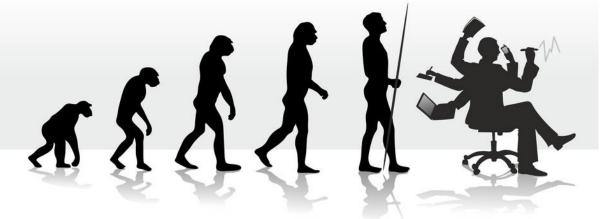
Can an alien experimentally learn and build a CPU?

Scenario:

- The computer looks cool to the alien!
- Dissects the box to find the intricate CPU
- Brings in alien technology to image, delayer, experiment, and learn physics of the silicon, transistor, gates, wires, etc.

- Can she teach other aliens to build a working computer now?
 - Probably not!
 - Unless she figures out the modular structure, functionality, architecture, and software

What we know about the human brain?



- In the learning process...
- What we know:
 - The underlying neurons and synapses are similar to other primates in terms of material and connectivity speed
 - However, there are visible differences in terms of connectivity and focused centers for computing
- The human brain follows an adaptive, data-driven, and domain-specific architecture

Can we reach the computing efficiency of the human brain?

BRAIN-INSPIRED COMPUTING

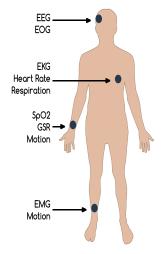
Brain-inspired computing

- Spectrum of brain models with various underlying device mechanisms, from very nonlinear complex to more simplified structures
- A surge of emerging computing fabrics and architectures
- The biggest challenge (and opportunity)
 - Alien problem: End-to-end holistic view of the system
- Simple example: deep neural networks

Deep learning revolution

Computer Vision

Cyber-Physical Systems



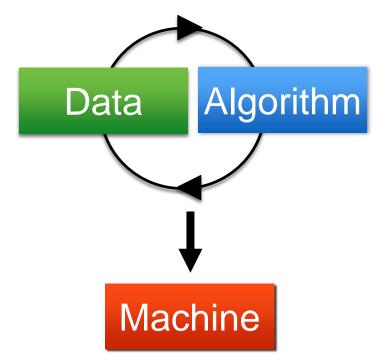
Speech Recognition

Search

Google Bai de 首度

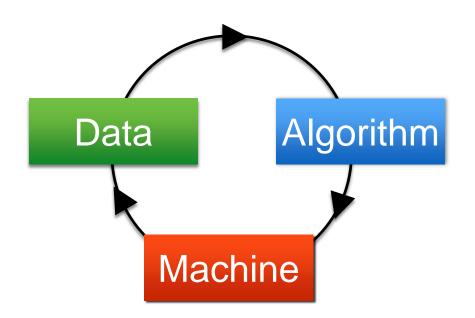
Holistic dimensionality reduction

Contemporary practice in system design for data-driven problems

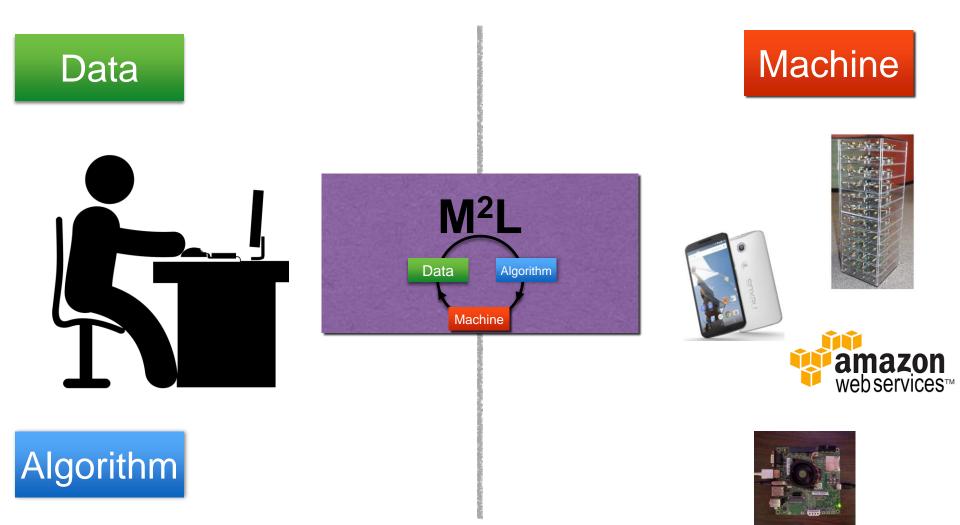


Holistic dimensionality reduction

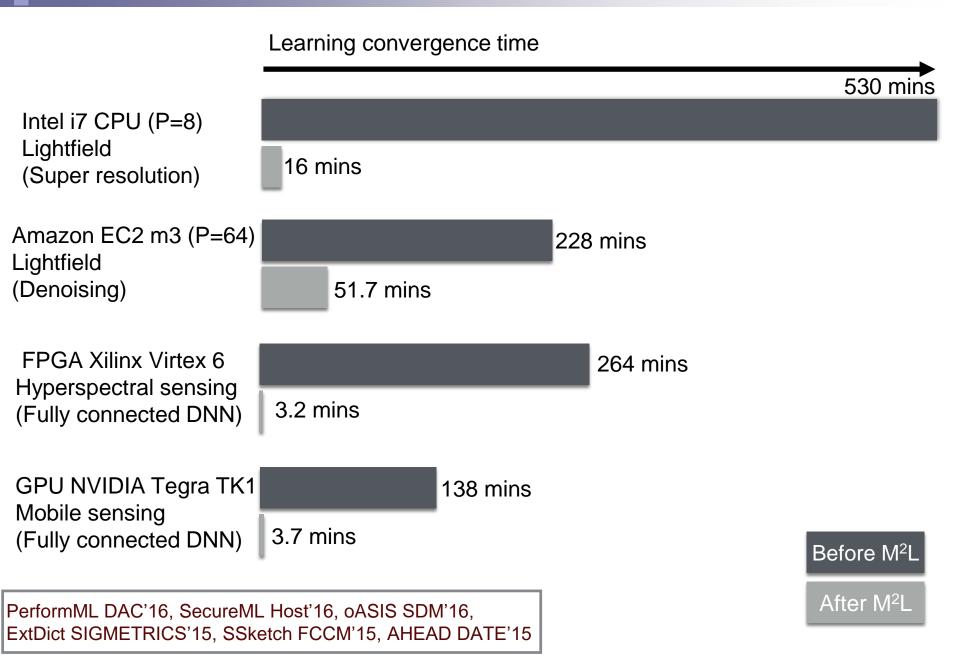
Our suggested methodology

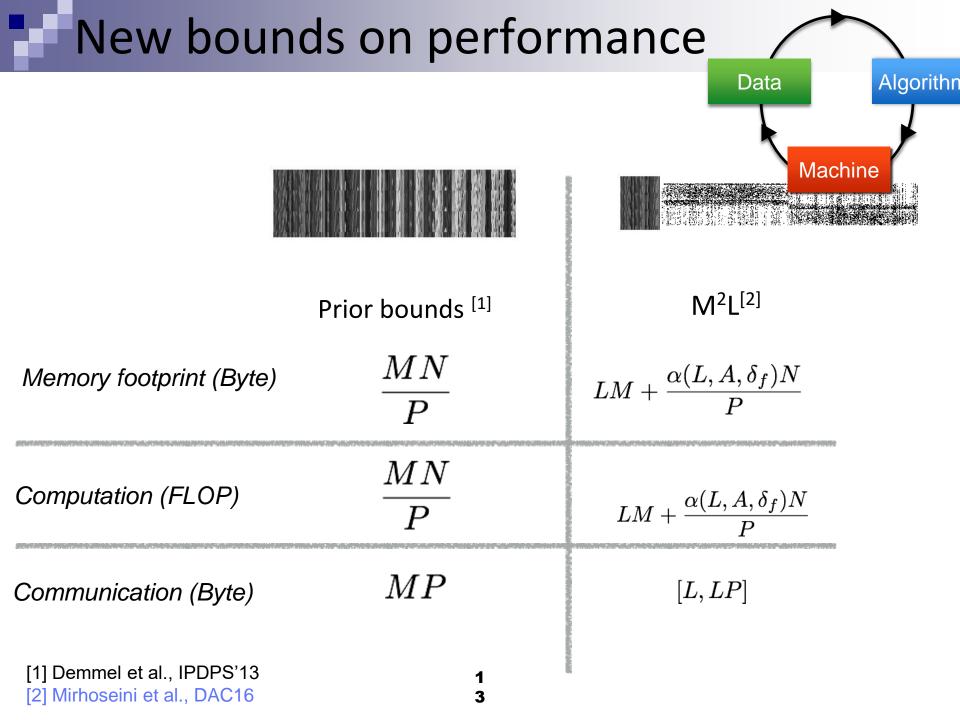


Automation



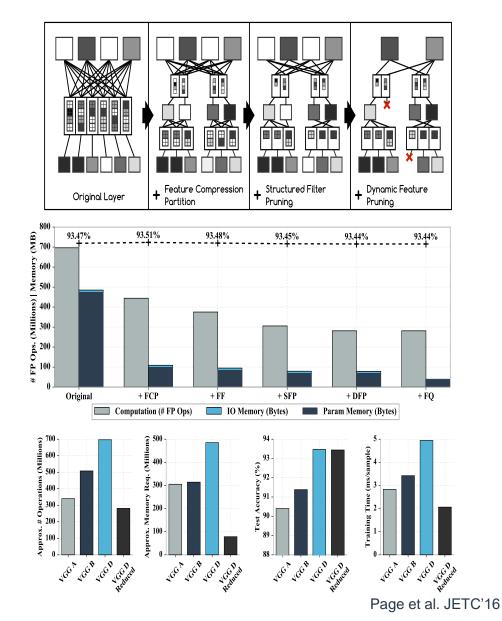
Some of M²L runtime improvement results



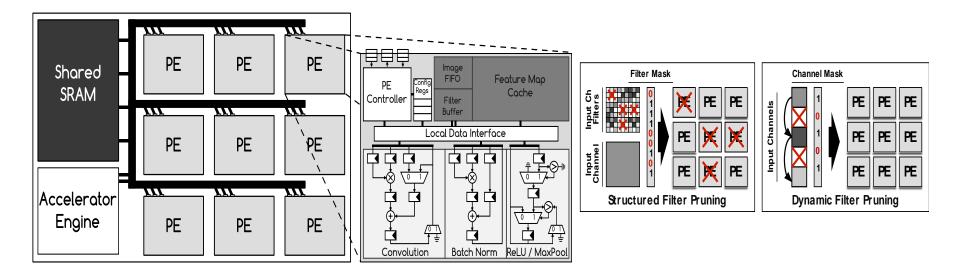


Network Reduction Techniques

- Look to reduce complexity at architectural level by removing dense connectivity
- 3 Sparsification Techniques:
 - Feature compression partition
 - Structured filter pruning
 - Dynamic feature pruning
- 2 Approximation Techniques:
 - Filter factorization
 - Filter quantization
- Demonstrated to reduce computation and memory by 60% and 93% w/ <0.03% impact on accuracy compared to baseline VGGNet on CIFAR dataset



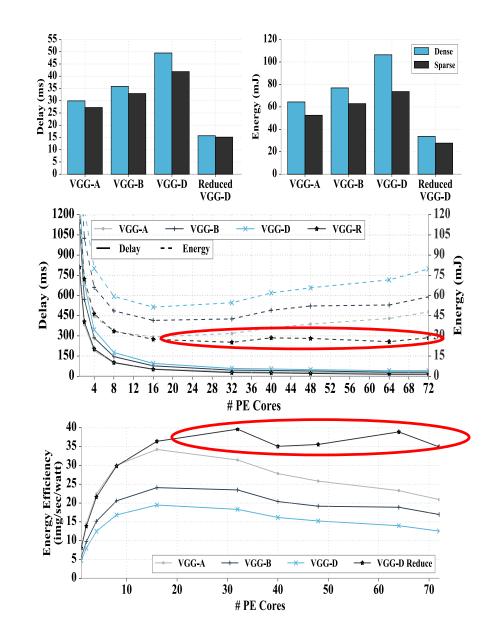
SPARCNet: SPARse Convolutional NETwork Accelerator



- SPARCNet is an accelerator for efficient deployment of convolutional neural networks in embedded, real-time systems.
- Processing engines perform concurrent layer operations such as 1D/2D convolutional, max-pooling, batch normalization, and ReLU.
- Operations are done using 16-bit floating-point.
- Router consists of 2 buses that are unidirectional with each having 4 16-bit channels. Channels support direct and broadcast communication patterns.
- Built-in support for three sparsification techniques.

SPARCNet: Implementation & Comparison

- Evaluated on 4 convolutional neural network topologies with varying depths.
- Classification accuracy evaluated on MNIS, CIFAR, and SVHN dataset.
- Explored impact on throughput and energy using varying # PEs.
- Depending on network topology, there exists optimal # PEs that provide optimal efficiency.
- Reduced VGG-D is able to obtain much higher efficiency and benefit from increased PEs.



FPGA, CPU, GPU Comparison

Arty Artix-7 FPGA Board

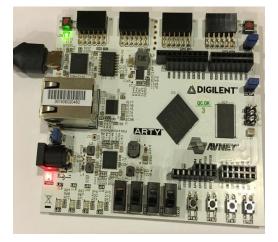
- Artix-35T FPGA (5200 slices, 1800 Kb BRAM, 90 DSPs)
- 256 MB DDR3 memory
- Embedded Microblaze bare metal

NVIDIA Jetson TK1 Board

- ✤ 4+1 Quad-Core ARM Cortex-A15
- K1 GPU with 192 CUDA Cores
- 2 GB DDR3 memory
- ✤ 16 GB eMMC
- Running custom Ubuntu Linux

NVIDIA Jetson TX1 Board

- 64-bit A57 CPUs
- X1 GPU with 256 CUDA Cores
- ✤ 4 GB DDR4 memory
- ✤ 16 GB eMMC
- Running custom Ubuntu Linux



FPGA, CPU and GPU Comparison

- Compared on CIFAR dataset using VGGNet network with 16 computational layers.
- FPGA w/ SPARCNet accelerator improves energy efficiency by:
 - ✤ 50x compared to base TK1 CPU only
 - 11.7x compared to TK1 GPU implementation
 - **7.5x** compared to TX1 GPU implementation

Platform	Throughput	Power	Energy	Execution Time	Energy Efficiency	Improvement
	(img/s)	(W)	(J)	(s)	(img/s/w)	Over Base ¹
NVIDIA TK1 (base) CF	U 1.01	12.5	14309	4943.82	0.08	_
NVIDIA TK1 w/ GPU	42.86	12.5	730	58.33	3.43	43x
NVIDIA TX1 w/ GPU	51.18	9.6	472	48.85	5.33	66x
SPARCNet-64 Artix-7	72.6	1.80	83.58	34.43	40.33	500x

FPGA Accelerator Comparison

- Compared to a number of existing accelerators using AlexNet network topology for vision tasks.
- SPARCNet has power consumption of 1.82 W & energy efficiency of 29.96 GOP/J.
- SPARCNet outperforms the next best accelerators [Zhang et al. 2015a] and [Qiu et al. 2016] by factors of 9X and 2X in efficiency.

Metrics	[Chakradhar et al. 2010] [Gokhale et al. 2014] [Zhang et al. 2015a] [Qiu et al. 2016] This work					
Platform	Virtex-5	Zynq	Virtex-7	Zynq	Artix-7	
	(SX240T)	(XC7Z045)	(VX485T)	(XC7Z045)	(XC7A200T)	
Precision	48-bit Fixed	16-bit Fixed	32-bit Float	16-bit Fixed	16-bit Float	
Clock (MHz)	120	150	100	150	100	
Network Complexity (GOP)	0.52	0.552	1.33	30.76 ¹	1.39	
Performance (GOP/s)	16	23.18	61.62	136.97	54.52	
Total Power (W)	14	8	18.61	9.63	1.82	
Energy Efficiency (GOP/J)	1.14	2.90	3.31	14.22	29.96	

Evaluated domains and APIs

Datasets	Platforms
 A. Video B. Hyperspectral C. Light field camera D. Cancer-tomography E. Mobile sensing 	 GP cluster: Amazon EC2, IBM iDataplex GPGPU: NVIDIA GeForce, Jetson TK1 FPGA single acc: Xilinx Virtex 6 FPGA cluster: 24x Xilinx Virtex 6
ML application (i) Visual classification (ii) Super resolution (iii) Denoising (iv) Sensory recognition	Algorithms and APIs Streaming dictionary formation Iterative regression, e.g., LASSO, SVM Power iteration, e.g., PCA Distributed fully connected DNN

Algorithn

Data

Improvement over state-of-the-art

- Data C, Platform 1, App (ii), 10.9x runtime
- Data E, Platform 2, App (iv), 4.8x power and 43.7 runtime
- Data E, Platform 4, App (2, 18.5x FLOPs and 76.3x runtime

Summary and Open Questions

- Develop holistic systems to bridge computation and physiology
 - Better understanding of brain functions for domain specification
 - Characterize the system in terms of learning capability, response time, energy, for multiple sets of problems
- For each new architecture/material provide programming and benchmarking sets for evaluation

