
Bringing Physical Dimensions to 

Neuromorphic Computing 

FarinazKoushanfar1 and Tinoosh Mohsenin2

1 Professor of ECE, University of California San Diego (UCSD) 

2Assistant Professor of CSEE, University of Maryland Baltimore County (UMBC)



Outline

ÂMotivation ςbrain 

Â Brain-inspired computing 

Â Suggested architecture/algorithm research thrusts

×Holistic performance-driven dimensionality reduction

×System and network topology

×Access architecture and order

×Automation
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Human brain?

Â The biggest marvel of all!

ÂHow can we learn from and mimic the human brain?
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Can an alien experimentally learn and build a CPU?

Â Scenario:

× The computer looks cool to the alien!

×Dissects the box to find the intricate CPU

×Brings in alien technology to image, 
delayer, experiment, and learn physics of 
the silicon, transistor, gates, wires, etc. 

ÂCan she teach other aliens to build a 
working computer now?

×Probably not!

×Unless she figures out the modular 
structure, functionality, architecture, and 
software 
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What we know about the human brain?

5

ÂLƴ ǘƘŜ ƭŜŀǊƴƛƴƎ ǇǊƻŎŜǎǎΧ

ÂWhat we know: 

× The underlying neurons and synapses are similar to other 
primates in terms of material and connectivity speed

×However, there are visible differences in terms of connectivity 
and focused centers for computing

Â The human brain follows an adaptive, data-driven, and 
domain-specific architecture



BRAIN-INSPIRED COMPUTING

Can we reach the computing efficiency of the human brain?
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Brain-inspired computing

Â Spectrum of brain models with various underlying 
device mechanisms, from very nonlinear complex to 
more simplified structures 

Â A surge of emerging computing fabrics and architectures

Â The biggest challenge (and opportunity) 

×Alien problem: End-to-end holistic view of the system

Â Simple example: deep neural networks
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Deep learningrevolution

Cyber -Physical Systems 

Speech Recognition Search
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Computer Vision



Holistic dimensionality reduction

ÂContemporary practice in system design for data-driven 
problems
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Holistic dimensionality reduction

ÂOur suggested methodology
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Automation
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GPU NVIDIA Tegra TK1 

Mobile sensing

(Fully connected DNN)

FPGA Xilinx Virtex 6 

Hyperspectral sensing

(Fully connected DNN)

Amazon EC2 m3 (P=64) 

Lightfield 

(Denoising)

Intel i7 CPU (P=8) 

Lightfield 

(Super resolution)

Some of M2L runtime improvement results

Before M2L

Learning convergence time 

16 mins  

51.7 mins  

3.2 mins  

3.7 mins  

138 mins  

264 mins  

228 mins  

530 mins  

After M2LPerformML DACô16, SecureML Hostô16, oASIS SDMô16, 

ExtDict SIGMETRICSô15, SSketch FCCMô15, AHEAD DATEô15 



New bounds on performance

Ax

Memory footprint (Byte)

Computation (FLOP)

Communication (Byte)
(words)

[1] Demmel et al., IPDPSô13 

[2] Mirhoseini et al., DAC16

Prior bounds [1] M2L[2]
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Network Reduction Techniques

Â Look to reduce complexity 
at architectural level by 
removing dense connectivity

Â 3 SparsificationTechniques:
× Feature compression partition

× Structured filter pruning

× Dynamic feature pruning 

Â 2 Approximation 
Techniques:
× Filter factorization

× Filter quantization

Â Demonstrated to reduce 
computation and memory 
by 60%and 93% w/ <0.03% 
impact on accuracy 
compared to baseline 
VGGNeton CIFAR dataset

Page et al. JETCô16



SPARCNet: SPARseConvolutional NETwork Accelerator

Â SPARCNetis an accelerator for efficient deployment of convolutional neural 
networks in embedded, real-time systems.

Â Processing engines perform concurrent layer operations such as 1D/2D 
convolutional, max-pooling, batch normalization, and ReLU. 

Â Operations are done using 16-bit floating-point.

Â Router consists of 2 buses that are unidirectional with each having 4 16-bit 
channels. Channels support direct and broadcast communication patterns.

Â Built-in support for three sparsificationtechniques.
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SPARCNet: Implementation & Comparison

Â Evaluated on 4 
convolutional neural 
network topologies with 
varying depths.

Â Classification accuracy 
evaluated on MNIS, CIFAR, 
and SVHN dataset.

Â Explored impact on 
throughput and energy 
using varying # PEs.

Â Depending on network 
topology, there exists 
optimal # PEs that provide 
optimal efficiency.

Â Reduced VGG-D is able to 
obtain much higher 
efficiency and benefit from 
increased PEs.


