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A Motivation ¢ brain

A Braininspired computing

A Suggested architecture/algorithm research thrusts
x Holistic performancairiven dimensionality reduction
x System and network topology

x Access architecture and order
x Automation



A The biggest marvel of all!
A How can we learn from and mimic the human brain?
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_n experimentally learn and build a CPU?

A Scenario:
x The computer looks cool to the alien!
x Dissects the box to find the intricate CPU

x Brings in alien technology to image,
delayer, experiment, and learn physics of
the silicon, transistor, gates, wires, etc.

A Can she teach other aliens to build a
working computer now?
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ot g{ x Unless she figures out the modular

structure, functionality, architecture, and
software



_e know about the human brain?
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x The underlying neurons and synapses are similar to other
primates in terms of material and connectivity speed

x However, there are visible differences in terms of connectivi
and focused centers for computing

A The human brain follows an adaptive, dataven,and
domainspecific architecture




Can we reach the computing efficiency of the human brain?

BRAININSPIRED COMPUTING



_pired computing

A Spectrum of brain models with various underlying
device mechanisms, from very nonlinear complex to
more simplified structures

A Asurge of emerging computing fabrics amahitectures

A The biggest challenge (and opportunity)
x Alien problem: Endo-end holistic view of the system

A Simple example: deep neural networks
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_sionalityreduction

A Contemporary practice in system design for ddtaven
problems
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_nsionality reduction

A Our suggested methodology
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_ntime Improvement results

Learning convergence time
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_duction Techniques

Dynamic Feature
Pruning

+ Feature Compression

+ Structured Filter
Partition

Pruning

A Look to reduce complexity
at architectural level by
removing dens&onnectivity
A 3 SparsificationTechniques:
= Feature compression partition
x  Structured filter pruning
= Dynamic feature pruning "
A 2 Approximation e
Techniques:
x  Filter factorization :zz
x  Filter quantization Egm
A Demonstrated to reduce Yo
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_BPABe Convolutional NEWwork Accelerator
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A SPARCNet an accelerator for efficient deployment of convolutional neural
networks in embedded, redgime systems.

Processing engines perform concurrent layer operations such as 1D/2D
convolutional, maxpooling, batch normalization, arfdeLU

A Operations are done using 4t floating-point.

A Router consists of 2 buses that are unidirectional with each havingbdt 16
channels. Channels support direct and broadcast communication patterns.

A Built-in support for threesparsificatiortechniques.
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_letmplementation & Comparison

A Evaluated on 4
convolutionalneural
networktopologies with
varying depths.

A Classification accuracy

evaluated on MNIS, CIFAR,

and SVHN dataset.

A EXplored impact on
throughput and energy
using varying # PEs.

A Depending on network
topology, there exists
optimal # PEs that provide
optimal efficiency.

A Reduced VG®is able to

obtain much higher

efficiency and benefit from
Increased PEs.
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