How can ideas from quantum computing improve or speed up neuromorphic models of computation?
Neuromorphic and Quantum Computing

• Two exciting new models for computation
 – Practical interest is driven by need for more efficient computational platforms
 – Specialized applications and processors are

• Neuromorphic computing
 – Adapt features of neural systems to computation

• Quantum computing
 – Adapt principles of quantum physics to computation

• Are there applications where the specialties of each model coincide?
 – Associate Memory Recall
Associative Memory

- **Associative Memory**
 - A data storage mechanism whereby locations are identified according to stored value

- **Content Addressable Memory (CAM)**
 - A memory that stores key-value pairs and recalls keys when provided with a value

- **Auto-associative CAM**
 - A CAM in which the key and value are the same

- **Random Access Memory (RAM)**
 - A memory that stores key-value pairs and recalls value when provided with a key/location

Pattern matching as a form of content addressable memory
Models of Associative Memory

• **Hopfield Networks**
 – An associative memory using a recurrent network of computational neurons
 – Network state evolves toward equilibrium

• **Discrete CAM model**
 – Consider a network of n neurons, where the i-th neuron is in a bipolar state
 \[
 z_i \in \{ \pm 1 \}
 \]
 – Synaptic weight w_{ij} couples neurons i and j
 \[
 z_i = \begin{cases}
 +1 & \text{if } \sum_j w_{ij} z_j > \theta_i \\
 -1 & \text{otherwise}
 \end{cases}
 \]
 – Each neuron is activated when its local field exceeds the activation threshold θ
Content-Addressable Memory Recall

• Storing memories in a Hopfield network
 – The network’s synaptic weights store memories

 \[\xi^{(k)} \in \{\pm 1\}^n\]
 \[w_{ij} = \sum_{k=1}^{P} \xi_i^{(k)} \xi_j^{(k)}\]
 \[E(z; \theta) = -\frac{1}{2} \sum_{i,j=1}^{n} z_i w_{ij} z_j - \sum_{i=1}^{n} \theta_i z_i\]

• Recalling memories in a Hopfield network
 – Evolve under a stochastic update rule

 \[z_i' = \text{sign}\left(\sum_j w_{ij} z_j - \theta_i\right)\]
 – Memories are stable fixed-points
 – Convergence guaranteed because the network energy is a Lyapunov function
Mapping Recall to Optimization

• Recast update in terms of global optimization

\[z'_i = \text{sign} \left(\sum_j w_{ij} z_j - \theta_i \right) \quad \leftrightarrow \quad z = \arg \min_z E(z; \theta) \]

- Search for the spin configuration that minimizes the network energy
- Thresholds (bias) still represent best guess
Adiabatic Quantum Optimization

• A quantum algorithm that returns the lowest energy state of a Hamiltonian
 — Evaluation makes use of the quantum superposition principle to sample configuration space
 — Execution depends on adiabatically evolving the quantum system toward a desired

\[\hat{H}(t) = A(t)\hat{H}_0 + B(t)\hat{H}_1 \]

• Recovery of the lowest energy state is the primitive for memory recall

\[E(z; \theta) \rightarrow \hat{H}_1 = -\sum_{i,j} w_{ij} \hat{Z}_i \hat{Z}_j - \sum_i \theta_i \hat{Z}_i \]
Experiments with Quantum Optimization

• **We use the D-Wave quantum processor**
 – A special purpose quantum processor that finds the ground state of an Ising Hamiltonian
 – Fabricated from coupled arrays of superconducting flux qubits
 – Operated as a quantum annealer
 – Validated as a probabilistic processor

• **Programmability limited by hardware constraints**
 – Size (# of qubits) and bits of precision restrict range of testable problem instances
 – Temperature and control systems limit range of execution scenarios
Experiments with Quantum Optimization

• Step 1: Specify problem instances
 – Select P memories and set one as the target memory
 – Calculate the synaptic weights using a learning rule L
 – Calculate the threshold / bias for the target memory

• Step 2: Solve problem instance
 – Program the Hopfield network into the hardware
 – Execute the quantum optimization program
 – Repeat execution N times to generate N samples

• Step 3: Confirm the correct memory was recalled.
 – Compute probability to recover correct memory
Experimental Measures of Capacity

Memory size 0.10n

- Probability to recall memory correctly
- Average accuracy plotted
- 100 random instances per spin size
- Hebb learning rule
- Accuracy increases with increasing bias
Experimental Measures of Capacity

Memory size 0.30 n

- Probability to recall memory correctly
- Average accuracy plotted
- 100 random instances per spin size
- Hebb learning rule
- Accuracy increases with increasing bias
Experimental Measures of Capacity

Memory size 0.50 n

- Probability to recall memory correctly
- Average accuracy plotted
- 100 random instances per spin size
- Hebb learning rule
- Accuracy increases with increasing bias
Associative Memory Models with Adiabatic Quantum Optimization

• Concluding Points
 – Associative memory was modeled using a discrete Hopfield network
 – Memory recall in Hopfield networks was reduced to the quantum optimization problem
 – Recall was validated experimentally using the D-Wave processor
 – Recent theoretical arguments from Santra et al. suggest exponential capacity when using quantum optimizations (arxiv:1602.08149)
 – Our results find the accuracy is lower than expected, most likely due to hardware noise and constraints
 – Continued hardware advances will should address these limits
Associative Memory Models with Adiabatic Quantum Optimization

Kathleen Hamilton, Alexander McCaskey, Jonathan Schrock, Neena Imam and Travis Humble

Quantum Computing Institute
Oak Ridge National Laboratory

How can ideas from quantum computing improve or speed up neuromorphic models of computation?

Oak Ridge, Tennessee, 30 June 2016