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Neuromorphic and Quantum Computing

• Two exciting new models for computation

– Practical interest is driven by need for more efficient 
computational platforms

– Specialized applications and processors are 

• Neuromorphic computing

– Adapt features of neural systems to computation

• Quantum computing

– Adapt principles of quantum physics to computation

• Are there applications where the specialties of each 
model coincide?

– Associate Memory Recall
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Associative Memory

• Associative Memory

– A data storage mechanism whereby locations 
are identified according to stored value

• Content Addressable Memory (CAM)

– A memory that stores key-value pairs and 
recalls keys when provided with a value

• Auto-associative CAM

– A CAM in which the key and value are the 
same

• Random Access Memory (RAM)

– A memory that stores key-value pairs and 
recalls value when provided with a key/location Pattern matching as a form of 

content addressable memory



4 © 2014 Travis S. Humble

Models of Associative Memory
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• Hopfield Networks

– An associative memory using a recurrent 
network of computational neurons

– Network state evolves toward equilibrium

• Discrete CAM model

– Consider a network of n neurons, where the 
i-th neuron is in a bipolar state

– Synaptic weight wij couples neurons i and j

– Each neuron is activated when its local field 
exceeds the activation threshold θ
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A 4-neuron network showing 
connectivity between nodes 
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Content-Addressable Memory Recall

• Storing memories in a Hopfield network

– The network’s synaptic weights store memories

• Recalling memories in a Hopfield network

– Evolve under a stochastic update rule

– Memories are stable fixed-points

– Convergence guaranteed because the 
network energy is a Lyapunov function
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Mapping Recall to Optimization

• Recast update in terms of global optimization

– Search for the spin configuration that minimizes the network energy 

– Thresholds (bias) still represent best guess

z = argmin
z
E z;q( )¢zi = sign wijz jj

å -qi( )
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Adiabatic Quantum Optimization

• A quantum algorithm that returns the lowest energy 
state of a Hamiltonian

– Evaluation makes use of the quantum superposition 
principle to sample configuration space

– Execution depends on adiabatically evolving the 
quantum system toward a desired 

• Recovery of the lowest energy state is the primitive 
for memory recall

Ĥ t( ) = A(t)Ĥ0 + B(t)Ĥ1

E z;q( )® Ĥ1 = - wij ẐiẐ j - qi Ẑi
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Experiments with Quantum Optimization

• We use the D-Wave quantum processor

– A special purpose quantum processor that finds 
the ground state of an Ising Hamiltonian

– Fabricated from coupled arrays of 
superconducting flux qubits

– Operated as a quantum annealer

– Validated as a probabilistic processor 

• Programmability limited by hardware constraints

– Size (# of qubits) and bits of precision restrict 
range of testable problem instances

– Temperature and control systems limit range of 
execution scenarios
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Experiments with Quantum Optimization

• Step 1: Specify problem instances

– Select P memories and set one as the target memory

– Calculate the synaptic weights using a learning rule L

– Calculate the threshold / bias for the target memory

• Step 2: Solve problem instance

– Program the Hopfield network into the hardware

– Execute the quantum optimization program

– Repeat execution N times to generate N samples

• Step 3: Confirm the correct memory was recalled.

– Compute probability to recover correct memory

Problem

Program

Result
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Experimental Measures of Capacity

• Probability to recall memory 
correctly

• Average accuracy plotted

• 100 random instances per spin 
size

• Hebb learning rule

• Accuracy increases with 
increasing bias

Memory size 0.10n
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Experimental Measures of Capacity

• Probability to recall memory 
correctly

• Average accuracy plotted

• 100 random instances 
per spin size

• Hebb learning rule

• Accuracy increases with 
increasing bias

Memory size 0.30 n
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Experimental Measures of Capacity

• Probability to recall memory 
correctly

• Average accuracy plotted

• 100 random instances 
per spin size

• Hebb learning rule

• Accuracy increases with 
increasing bias

Memory size 0.50 n
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Associative Memory Models with 
Adiabatic Quantum Optimization

• Concluding Points

– Associative memory was modeled using a discrete Hopfield network

– Memory recall in Hopfield networks was reduced to the quantum 
optimization problem

– Recall was validated experimentally using the D-Wave processor

– Recent theoretical arguments from Santra et al. suggest exponential 
capacity when using quantum optimizations (arixv:1602.08149)

– Our results find the accuracy is lower than expected, most likely due to 
hardware noise and constraints

– Continued hardware advances will should address these limits

– Seddiqi and Humble, Adiabatic quantum optimization for associative memory 
recall, Frontiers in Physics 2, 79 (2014)
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