Designing a Synchronization-reducing
Clustering Method on Manycores:
Some Issues and Improvements

Weijian Zheng (wz26@iupui.edu)
November 13, 2017

The Machine Learning in HPC Workshop at SC’17, Denver, CO w

DEPARTMENT OF
COMPUTER AND
INFORMATION SCIENCE

SCHOOL OF SCIENCE

A Purdue University School
Indianapolis

Outline

I |ntroduction — Problems

Algorithm
 The synchronization-reducing algorithm
* The annealing-enhanced algorithm — Solutions

* \alley-searching heuristics

Parallel implementation

* Experimental results
* Effect of parameters
e Sequential program performance — Evaluations

* Parallel performance

Conclusions & future work

Introduction (1/2)

1. Clustering is one of the most
Important data summarization
methods.

2. Standard K-means works in 4
steps as shown in right figure.

1st step

2nd step

3rd step

4th step

- Update k centers and cost

Randomly select k
~ points as initial centers

y

Assign each point to its

S

closest center

\ 4

Convergence
condition is
met?

Introduction (2/2)

3. Challenges for designing a scalable clustering algorithm:
A. Frequent synchronization can affect performance.
* Synchronization is needed after each iteration for parallel K-means.
B. Visiting all data points at every iteration results in a poor data locality.

4. To solve the previous two challenges, we use:
A. software blocking (tiled data layout in next slide)
* solve 2nd challenge
B. design a new synchronization-reducing clustering algorithm.
* solve 1st challenge

| Data layout

5 dimensions
|

An example of tiled data layout: - !

Object 0
_ _ , Block(tile) 0 - Object 1

« Given 9 objects, each object has 5 | J
. . Object 2

dimensions. -

Object 3
« As shown in the figure, each block (or Block(tile) 1 - Object 4
tile) has 3 objects. i Object 5
_ i Object 6
- Totally there are 3 blocks (or tiles). Block(tile) 2 - Object 7
I Object 8

Data layout for 9 objects with block size equal to 3

Maln bOdy Of the elect k points as
| synchronization-reducing CIPD
algorithm B ,,

Apply local optimization
1st step — PP P

unction to each block
Main body of the algorithm includes 3 steps: — f

1. Local optimization function is —
used to cluster each block
iteratively without any
communication _

\ 4

Call merge function to merge

2nd step — information from each block
and update center

2. Merge function is used to merge
each block’s local information.
3rd step

3. Converge or not

Intuition of the local optimization function

I * Two data blocks: red and blue.
e Each red and blue block can find 3 clusters independently.
* Their merged results are still correct.

&
*® & °

*® ¢

. —

Merged cluster O

Merged cluster 1 et i

LO Cal O ptl m I Zatl on B Use the global center
I function rststep = Qitialcente)

v
Assign each point to its

closest center

1. There are 3 steps.

2nd step —

2. Threshold is introduced as Y
Update centers and local new N

cost

the stop condition.

« Most often the progress is too
small after a few local
iterations

3rd step —

| The previous algorithm has some issues...

 For some datasets, it shows a slower convergence rate than K-means.

* l.e., not always faster

« Hence, we propose the new Annealing-enhanced algorithm

Motivation of using annealing

1. Similar to the game of getting a ball into the
lowest crevice.

2. Hard shaking can avoid the ball stuck at local
lowest crevice.

3. Also, the ball may roll by itself most of the time.

4. We use frequent synchronization (annealing
steps) to simulate “hard shaking”, and use local
optimization to simulate “ball rolling on its own”

From https://www.dutchcrafters.com/American-Made-Wooden-Marble-Pyramid/p/54435

. @kpoi@
The anneallng- initiaIIcenter
| enhanced algorithm

#loops < #annealing steps ?
N

1. Two types of functions

. _ Apply
will be used: 1t step Apply local optimization K-means
 The previous local function to each block function

optimization _ | to each
function Call merge function to merge block

S

e The one-step K- 2nd step — information from each block
and update center

means function on

each block
2. 3 steps areincluded in
this algorithm. 3rd step —

new cost >= old cost
#loop++

But, how to choose #annealing steps?

* Problem of annealing-enhanced algorithm: Too small or too large number
of annealing steps will cause slower convergence.

 How to determine the number of annealing steps?

 We introduce Valley-searching heuristics.

Heuristics to decide the number of annealing
| steps

1. Using “progression-state”

metrics, such as 1st step — #reassignment
. points is small ?
1. number of reassignment
objects -

2. costimprovement

2. Valley-searching heuristics
follows 3 steps: 2nd step - with similar #reassignment ?
1. Find the possible stop places
2. Verify for the possible stop _

place T o
. rd ste .
3. Stop annealing P Stop annealing

there exist A consecutive iterations

Parallel implementation (1/2)

Hybrid MPI/Pthread
computing model

Root process Is
responsible for the
distribution of data.

data point 0

data point 1

data point 2

data point 3

data point 4

data point 5

data point 6

data point 7

Process0

—

Processl

data point 0 DRSS _datapoint0 _
data poiitil .Thread 0 data point 1
data point 2 Process d data point »
data point 3 Thread 1 L
data point 4 Process 1 ["data ROINUE
data point 5 IThread 0 2
data pOint 6 Process i data point 6
data point 7 Thread 1 B

Block 0
Block 1

Block 0

3 Block1

Block 0

~ Block1

Block 0

| Block 1

Data distribution example: given 8 data points and
each block contains 1 data point, distribution of data
into 2 processes (each process has 2 threads), each
thread gets 2 blocks

Parallel implementation (2/2)

Thread

< Process
Thread

Global

Process

« 3 levels of merge includes from block to thread, from
thread to process, from process to global.

Experimental results

We perform 3 types of Datasets MNIST | CIFAR10 | CIFAR100
experiments using 3 datasets #Clusters 10 10 100
on a Cray XE6/XK7 system. #Data points | 10,000 | 60,000 | 60,000

Dimensions | 784 3,072 3,072
Datasetsize |1/MB | 626MB |629MB

2. Sequential program Datasets used to test
performance

1. Parameter effect

3. Parallel performance

| Parameter effect: #annealing steps

Annealing SSE (sum of square | #lterations Time
steps error) cost (seconds)

50 39.884 X10° 140 613.72

75 39.885 X 10° 151 502.88

100 39.886 X 10° 124 238.8

125 39.884 X10° 208 540.33

e Effect of the number of annealing steps using CIFAR100 dataset
* There exist an optimal number of annealing steps
* 100 is the best number of annealing steps for this case

| Parameter effect: stop condition

Threshold (local SSE cost #Iterations Time

stop condition) (seconds)
90% 25.332 X 10° 32 12.59
95% 25.332 X 10° 32 12.59
99% 25.335 X 10° 26 10.22
100% 25.541 X 10° 21 14.33

* Effect of the stop condition using MNIST dataset
* Large threshold can decrease the #iterations.
* Smallest execution time is obtained by setting threshold=99% in this case.

Sequential program performance

Dataset K-means Annealing-enhanced
SSE cost #iterations SSE cost #iterations

MNIST | 25.322 X 10° 106 25.329 X10° 54

CIFAR10 | 47.437 X10° 88 47.437 X10° 80

CIFAR100 | 39.884 X 10° 201 39.886 X 10° 124

* Cost and #iterations comparison between our algorithm and K-means algorithm
e Qur algorithm can obtain similar SSE with less #iterations

| Sequential program performance

Dataset K-means execution time Annealing-enhanced
(seconds) (seconds)
MNIST 15.6 8.9
CIFAR10 303.5 295
CIFAR100 6700.6 5650

* Sequential version’s executing time on different datasets using standard K-
means and annealing-enhanced algorithm
* Our annealing-enhanced algorithm is faster than standard k-means

Parallel performance

I T— CIFAR10 scalability MNIST scalability
A 18 -
6000 + \ 16
.\ &S
- \ #MPI k-means N #*MPI k-means
T:' 5000 | %% . . 0 1o x"% <-annealing-enhanced tiled
£ \. \ <+-annealing-enhanced tiled wl2 - N z :
= 4000 | \) ; : € . sync-reducing algorithm
= \ sync-reducing algorithm = i \\
- ‘ f‘&% 10 NG
S \ "\ 3 N
5 3000 - N\ 28 h
= N ‘5 %_k%{%
o R\"%»%v\) Q6 F —~—
g 2000 I~ N &Wa‘?ﬁ‘%ﬁi\?%z g ,ﬁy"@*@m o
Ll ~ L 4 - ~
e, - «% aa
0 ! | L | - |o— | 0 | 1
1 2 4 8 16 32 1 2 4
cores

cores

* Scalability test of CIFAR10 and MNIST dataset using 1 to 32 cores.

 Our implementation presents good scalability and is 19% faster than
standard K-means algorithm

Conclusion and future work

I 1. To design a more scalable clustering algorithm, we propose a
tile-based synchronization-reducing algorithm.

2. Annealing-enhanced algorithm was designed to tackle the
problem of original sync-reducing method’s slow convergence
rate. New heuristics are introduced to support the algorithm.

3. We design and develop a parallel implementation of the
annealing-enhanced algorithm using hybrid MPI/Pthread model,
providing faster performance than K-means.

4. Our future work Is to extend this idea to support other machine
learning methods

Thank You!

Designing a Synchronization-reducing
Clustering Method on

November 13, 2017

The Machine Learning in HPC Workshop at SC'17, Denver, CO m

TUPL/T | DEPARTMENT OF
: COMPUTER AND
INFORMATION SCIENCE

SCHOOL OF SCIENCE

A Purdue University School

Indianapalis

