
BLAZING TEXT
Scaling and Accelerating Word2Vec using
Multiple GPUs

Saurabh Gupta
Applied Scientist, Amazon AI

OVERVIEW

▸ What is Word2Vec?

▸ Need for speed - Can deep learning frameworks help?

▸ Hardware view: NVIDIA GPU architecture

▸ Software view: CUDA C/C++

▸ BlazingText: GPU acceleration and performance

▸ Future work

BLAZING TEXT

WORD2VEC

▸ Dense low-dimensional embedding space such that the
geometry of resulting vectors captures word semantic
similarity

▸ vec(“King”) - vec(“Queen”) + vec(”Woman”) = vec(“Man”)

▸ This idea has enabled many Natural Language Processing
(NLP) algorithms to achieve better performance - Machine
Translation, POS tagging, NER, Sentiment analysis.

▸ How to train? Predict surrounding words in a window of
length m of every word.

BLAZING TEXT

BLAZING TEXT

WORD2VEC INTUITION
……….. and Tom_Cruise is a great actor…

[Tom_Cruise, actor]

[Tom_Cruise, great]

One-hot encoded 
Tom_Cruise vector

10,000 vocab 
dimensions Hidden Layer  

with 300 units

Probability of predicting  
actor

Input Weights 
10,000 X 300

Output weights 
10,000 X 300

Softmax classifier with 10,000 outputs

Given a sentence -  
Try to maximize the probability of  
predicting context words.

Probability of predicting  
great

BLAZING TEXT

WORD2VEC INTUITION
Finally, the input weight matrix (10,000 X 300) is what we are interested in. It is
nothing but a word vector lookup table!

However, it is very inefficient to learn the softmax weights (huge summation in the
denominator!). The neural network has a tremendous number of weights, all of which
would be updated slightly by every one of our billions of training samples!

So, Mikolov et al introduced negative sampling, according to which the following
objective function should be maximized:

Tom_Cruise
actor Any random word vector 

not in Tom_Cruise’s context

Note: w and c come from different weight matrices. Think of family of LR classifiers!

BLAZING TEXT

WORD2VEC ACCELERATION USING ASYNC SGD ON CPU

TRAINING
CORPUS

Thread 1

Thread 2

Thread 3

Thread 4

INPUT MATRIX 
(CENTER WORDS)

OUTPUT MATRIX
(TARGET WORDS)

BLAZING TEXT

NEED FOR SPEED! USE GPU?

▸ Many downstream NLP applications use Word2Vec to initialize word embeddings.

▸ Datasets can be of the order of several GBs, on which CPU Word2Vec can take
several hours or even days.

▸ GPU to the rescue - Use TensorFlow, MXNet, PyTorch etc ?

▸ These frameworks not very suitable for this application (Hard to beat CPU
implementations - Gensim, FastText):

▸ Network is not that deep. Do gradient math by hand and write your own kernels.

▸ SGD with batch size = 1 works the best. Large batches affect convergence
significantly - defeats the purpose of using a deep learning framework

▸ Data Iteration is compute intensive. Very slow in Python due to GIL.

▸ Use CUDA APIs for a fine grained control over GPU parallelism!

HETEROGENEOUS PARALLEL COMPUTING

GPU vs CPU

HARDWARE VIEW

CUDA EXECUTION MODEL

CUDA EXECUTION MODEL

SOFTWARE VIEW

BLOCK OF THREADS AND GRID OF BLOCKS

SOFTWARE VIEW

BLOCKS ENABLE EFFICIENT COLLABORATION

SOFTWARE VIEW

THREAD AND BLOCK ID AND DIMENSIONS

MEMORY MODEL

CUDA MEMORY HIERARCHY AND GLOBAL MEMORY

BLAZING TEXT
Word2Vec Acceleration On GPU

BLAZING TEXT

GPU ACCELERATION CHALLENGES:
‣ Just like CPU, use n threads to break the file into n parts and do async SGD? Not that

straightforward! Remember that a single GPU thread is much much slower than a
single CPU thread!

‣ Cannot assume that the file can reside in GPU memory (~12GB). Stream sentences
from disk to GPU’s DRAM? Transfer speed not that good. Batch streaming of
sentences to GPU RAM to amortize cost of data transfer? Possible!

‣ Given the CUDA threading and memory model, use one GPU thread per center
word? Probably no. Use ~100 threads per word if vector dim = 100

‣ Threads for vector dot products need to synchronize to calculate the sum (reduce
operation). So one thread block per word? And have as many thread blocks as the
MAX SENTENCE LENGTH?

‣ The above approach seems reasonable. But really?

BLAZING TEXT

APPROACH 1: MASSIVELY PARALLEL

……….. AMD stock is ……………………… fall…

Block 0 Block 1 Block 2 Block 8

Although this approach is massively parallelized, it results in huge accuracy drop.
When a window moves across a sentence, the vector of each word can be
updated up to 2w times, where w is the size of the window. However, with this
approach, due to the parallelism at word level, these updates might get lost. 
 
Alternative approach:

Map a sentence to a CUDA block and each dimension of word vector to a thread. 
Each word in the sentence mapped to a block is processed sequentially. This
approach might result in race conditions as well but to a lesser degree than the
former approach.

BLAZING TEXT

APPROACH 2: CONTROL EXCESSIVE PARALLELISM FOR ACCURACY

Sentence 0…..

Block 0 Block 1 Block n

Sentence 1….. Sentence n…..

Batch sentences and transfer to GPU. Let each thread block process a sentence! 
This approach results in 1.6 - 2x speedup over 8 threaded CPU while retaining the  
accuracy.  
More implementation details can be found in the paper.

DATA0
MEMCPY TO

GPU

KERNEL0

DATA1
MEMCPY TO

TO GPU DATA2

KERNEL1 MEMCPY TO
TO GPU

KERNEL2GPU

CPU  
THREAD

Data I/O can be the bottleneck too. Use CUDA streams. 
Execution Time-line

BLAZING TEXT

SCALING TO MULTIPLE GPUS
‣ Use data parallelism

‣ The model parameters - Input and Output vectors for all the words in vocabulary,
are replicated on each GPU

‣ Each device then independently processes the data partition it owns and updates its
local model, periodically synchronizing the local model with all other N-1 GPUs.

‣ Efficient model synchronization: NVIDIA’s NCCL library, which provides an
AllReduce method that handles the peer-to-peer data transfer between the GPUs in
an optimized way based on the topology of GPU network.

‣ Synchronization frequency?

BLAZING TEXT

SCALING TO MULTIPLE GPUS: THROUGHPUT

BLAZING TEXT

SCALING TO MULTIPLE GPUS: ACCURACY

BLAZING TEXT

FUTURE WORK
‣ Use Volta GPU. Available on AWS as P3 instances.

‣ Better synchronization frequency model - exploit the fast that model updates are
linked to word frequency.

‣ Better learning rate scheduling.

BLAZING TEXT

THANK YOU!
QUESTIONS?

