
Accelerating deep neural network learning for
speech recognition on a cluster of GPUs

Guojing Cong 1, Brian Kingsbury 1, Soumyadip Gosh 1,
George Saon 1, Fan Zhou 2

1IBM TJ Watson Research Center
1101 Kitchawan Road, Yorktown Heights, NY, 10598
2Georgia Institute of Technology, Atlanta, GA, 30332

November, 2017

Outline

I Introduction – application, data, neural network, sequential
performance

I Acceleration strategies through parallelization
I Results
I Conclusion and future work

The application

I train neural networks for acoustic modeling for
large-vocabulary continuous speech recognition

I use hybrid hidden Markov model/neural network
(HMM/NN) approach

I neural network is trained to classify input feature vectors
that summarize the acoustic characteristics of the speech
signal over a period of 90–400 ms. into HMM states

The data

I 260-hour Switchboard American English telephone
conversational task using the Mississippi State transcripts

I test data is the Switchboard part of the NIST 2000 Hub5
Evaluation data

I Acoustic feature vector, a “frame”, has 140 dimensions
I the training set contains 94M frames, and we use an

alphabet of 32,000 context-dependent HMM states

The network

I a windowed, bidirectional long short-term memory (LSTM)
architecture, each window has 21 frames

I 4 bidirectional LSTM layers with 512 LSTM units per
direction per layer

I 32,000 HMM output states
I a 256-unit linear bottleneck layer between LSTM and

output
I 30M parameters

The sequential Implementation

I implemented in Torch with CuDNN library
I runs stochastic gradient descent (SGD) for 14 epochs with

initial learning rate γ1 = 0.025 and minibatch size B = 128
I Validation at end of each epoch, and the average negative

log-posterior estimate, or validation loss, is computed.
I achieves validation loss 1.63 and word error rate 10.6%
I learning rate reduced by half when the validation loss does

not improve by 1%
I Each epoch takes > 2 hours, and training takes more than

1 day on P100 GPU

Notations

We use ‖ · ‖2 to denote the `2 norm of a vector in Rd ; 〈·〉 to
denote the general inner product in Rd . The following are key
parameters of the algorithms.

I P denotes the number of learners;
I K denotes the length of the delay;
I Bn, B̄, or B denotes the mini-batch size for the n-th update;
I γn, γ̄, or γ denotes the step size for the n-th update;
I ξj

k ,s denotes the i.i.d. realizations of a random variable ξ
generated by the algorithm on different processors and in
different iterations, especially, j = 1, ...,N, k = 1, ...,K , and
s = 1, ...,B.

Assumptions

I F : Rd → R is continuously differentiable, gradient function
of F is Lipschitz continuous with Lipschitz constant L > 0

I The sequence of iterates {wj} is contained in an open set
over which F is bounded below by a scalar F ∗.

I For any fixed parameter w, the stochastic gradient
∇F (w; ξ) is an unbiased estimator of the true gradient
corresponding to the parameter w

I There exist scalars M ≥ 0 and MV ≥ 0 such that, for all
k ∈ N,

Eξ
∥∥∇F (w; ξ)

∥∥2
2 −

∥∥Eξ∇F (w; ξ)
∥∥2

2 ≤ M + MV
∥∥∇F (w)

∥∥2
2.

Acceleration through parallelization

I The cluster we use has 5 IBM Minsky nodes. Each node
has 2 Power8 GPUs with 10 cores each, and 4 NVIDIA
Tesla P100 GPUs. The interconnect between the nodes is
Infiniband.

I The communication is implemented using CUDA-aware
openMPI 2.0 through the mpiT library

I ASGD vs. our approach

ASGD

We run two popular ASGD implementations, Downpour and
EAMSGD, for 28 epochs. As Downpour does not converge with
γ1 = 0.025, set γ1 = 0.01 instead. Set γ1 = 0.025 for
EAMSGD.

 2

 3

 10000 100000

lo
ss

time (s)

Downpour
EAMSGD

SGD

Figure: ASGD methods with 4 GPUs (log− log plot).

ASGD – 20 GPUs

γ1 = 0.001 for Downpour and γ1 = 0.01 for EAMSGD. P = 20
with 48 epochs. both EAMSGD and Downpour are about 4.5
times faster than SGD (run for 14 epochs). The loss for
Downpour is 1.981, while the loss of EAMSGD remains above
7.

 1

 10

 100 1000 10000 100000

lo
ss

time (s)

Downpour
EAMSGD

Figure: ASGD methods with 20 GPUs (log− log plot).

Convergence challenge for ASGD

I Scalability of ASGD is determined by the impact of P on its
convergence rate guarantee, that is, the average expected

squared gradient norm E 1
N

N∑
n=1

∥∥∇F (w̃n)
∥∥2.

I After K updates, the bound on E 1
N

N∑
n=1

∥∥∇F (w̃n)
∥∥2 is

E
1
N

N∑
n=1

∥∥∇F (w̃n)
∥∥2 ≤

[C0(F (w̃1)− F ∗)

γ̄N
+

C1γ̄
2L2M2P
2B̄

]
where C0 and C1 are constants independent of P.

I As P increases, the convergence rate guarantee becomes
larger (worse).

KAVG

We adopt a synchronous, P-learner K-step model averaging
approach (KAVG). With KAVG, P learners run concurrently, and
average their parameters every K steps.

Algorithm 1: KAVG
initialize w̃1
for n = 1, ...,N do

Processor Pj , j = 1, . . . ,P do concurrently:
set wj

n = w̃n ;
for k = 1, ...,K do

randomly sample a mini-batch of size Bn and update:

wj
n+k = wj

n+k−1 −
γn
Bn

Bn∑
s=1
∇F (wj

n+k−1; ξj
k ,s)

end for

Synchronize w̃n+1 = 1
P

P∑
j=1

wj
n+K ;

end for

Analysis of KAVG

Theorem
With a fixed stepsize γn = γ̄ and a fixed batch size Bn = B̄ for
all n ∈ N satisfying

B̄ ≥ Lγ̄MG(γ̄LK +
1
P

).

the expected average squared gradient norm of F for KAVG
satisfies the following bounds for all N ∈ N:

E
1
N

N∑
n=1

∥∥∇F (w̃n)
∥∥2 ≤

[
2(F (w̃1)−F∗)
γ̄N(K +1) + γ̄LM

B̄

(
1
P + γ̄LK

2

)]
·(

γ̄PLK +1
γ̄PL(K−1)+1

)

Impact of various parameters on convergence

I 2(F (w̃1)−F∗)
γ̄N(K +1) term is primarily impacted by N, and goes to

zero as N increases. Increasing K and γ decreases this
term.

I γ̄LM
B̄

(
1
P + γ̄LK

2

)
term is independent of N, and is impacted

by the choice of P, B, and K . Favors large B, large P, and
small γ.

KAVG with 4 GPUs

We start with P = 4 GPUs, and run KAVG for 28 epochs.
γ1 = 0.025, and B = 128.

 1

 10

 1000 10000 100000

lo
ss

time (s)

KAVG
SGD

Figure: KAVG with 4 GPUs (log− log plot).

KAVG finishes 28 epochs in 41415 seconds, and the loss
achieved is 1.65, close to the loss achieved by SGD

KAVG with 20 GPUs

γ1 = 0.025 and B = 128.

 1

 10

 1000 10000

lo
ss

time (s)

B=128
B=64
B=32

Downpour

Figure: KAVG and Downpour with 20 GPUs (log− log plot).

the B=128 line shows the evolution of validation loss over time
for KAVG with minibatch size 128 for 77 epochs. The wall clock
time taken is 25191 seconds. At a final loss of 1.81, the
speedup is 3.23.

Explorations of B

I reduce B from 128 to 64. KAVG converges much faster
with B=64 than with B=128.

I After 59 epochs, it converges and the final loss is 1.75. The
speedup is 3.7.

I The disadvantage of small B is that the GPU computing
resources may not be fully utilized. Epoch time becomes
longer. Yet the faster convergence rate makes it worthwhile

I further reduce B to B=32. Training converges even faster
as shown by the B=32 line. At the end of of 59 epochs, the
loss is at 1.70. However, with B=32, more epochs do not
reduce the loss below 1.70.

Adapting B and γ

Algorithm 2: Adapt(γ, B, Bmax , γmin, βB, βγ)

if validation loss stops improving then
if B < Bmax then

B ← min(B · βB,Bmax);
else

if γ > γmin then
γ ← max(γ/βγ , γmin);

end if
end if

end if
return (γ, B)

Impact of dynamic B

We use Bmax = 1024, and start with B = 48. βγ = βB = 1.2,
and γmin=0.

 2

 3

 4

 5

 6

 7

 8

 9

 10

 5 10 15 20 25 30 35 40 45 50
 48

 512

 1024

epochs

loss
B

Figure: Adapting B and γ

B remains constant for about 20 epochs, then starts to grow
fast and reaches 1024. After 50 epochs, the loss is at around
1.66 < 1.7. Time used is 16150 seconds.

 1.635

 1.64

 1.645

 1.65

 1.655

 1.66

 1.665

 1.67

 1.675

 1.68

 1.685

 40 42 44 46 48 50

lo
ss

epochs

maxB=1024
maxB=2048

Figure: Impact of very large Bmax . Results shown for epoch 40 and
beyond

Evolution of average gradient norm

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 5 10 15 20 25 30 35 40 45

av
er

ag
e

ex
p

ec
te

d
 s

q
u

ar
ed

 g
ra

d
ie

n
t

n
o

rm

epochs

LSTM
DNN
PROJ

Figure: Evolution of expected average squared gradient norm for
LSTM, PROJ, and DNN

Adam with batch size adaptation

 1.6

 1.62

 1.64

 1.66

 1.68

 1.7

 1.72

 1.74

 1.76

 1.78

 1.8

 20 25 30 35 40 45 50 55
 48

 2048

 8196

epochs

loss
loss-128

B

Figure: ADAM with batch size adaptation

KAVG performance

 1.56

 1.58

 1.6

 1.62

 1.64

 1.66

 1.68

 1.7

 1.72

 1.74

KAVG KAVG-1 KAVG-2 KAVG-3
 2

 3

 4

 5

 6

 7

 8

lo
ss

sp
ee

d
u

p

loss
speedup

Figure: Performance of four KAVG implementations

Conclusion and future work

I KAVG performs better than ASGD for our application
I Adapting batch size is effective
I Adam is effective
I Further explore larger data sets

