
Some Issues and Improvements

Designing a Synchronization-reducing

Clustering Method on Manycores:

Weijian Zheng (wz26@iupui.edu)

November 13, 2017

Jack Dongarra, Distinguished Professor
University of Tennessee, Oak Ridge National Laboratory,
and the University of Manchester

PRESENTS

Algorithmic and Software Challenges when Moving Towards Exascale

Jack Dongarra holds an appointment at

the University of Tennessee, Oak Ridge

National Laboratory, and the University

of Manchester. He specializes in

numerical algorithms in linear algebra,

parallel computing, use of advanced-

computer architectures, programming

methodology, and tools for parallel

computers. He was awarded the IEEE

Sid Fernbach Award in 2004; in 2008 he

was the recipient of the first IEEE Medal

of Excellence in Scalable Computing; in

2010 he was the first recipient of the

SIAM Special Interest Group on

Supercomputing's award for Career

Achievement; in 2011 he was the

recipient of the IEEE IPDPS Charles

Babbage Award; and in 2013 he received

the ACM/IEEE Ken Kennedy Award. He

is a Fellow of the AAAS, ACM, IEEE,

and SIAM and a member of the National

Academy of Engineering.

In this talk we examine how high

performance computing has changed over

the last 10-year and look toward the future

in terms of trends. These changes have had

and will continue to have a major impact on

our software. Some of the software and

algorithm challenges have already been

encountered, such as management of

communication and memory hierarchies

through a combination of compile--time and

run--time techniques, but the increased scale

of computation, depth of memory

hierarchies, range of latencies, and increased

run--time environment variability will make

these problems much harder.

DATE: Monday, 4/7/2014
TIME: 11:00 am
ROOM: IT 152

The Machine Learning in HPC Workshop at SC’17, Denver, CO

IUPUI

Outline
• Introduction

• Algorithm

• The synchronization-reducing algorithm

• The annealing-enhanced algorithm

• Valley-searching heuristics

• Parallel implementation

• Experimental results

• Effect of parameters

• Sequential program performance

• Parallel performance

• Conclusions & future work

Solutions

Evaluations

Problems

IUPUI

Introduction (1/2)

Introduction

1. Clustering is one of the most

important data summarization

methods.

2. Standard K-means works in 4

steps as shown in right figure.

Randomly select k
points as initial centers

Assign each point to its
closest center

Update k centers and cost

Convergence
condition is

met?

Exit

Y

N

1st step

2nd step

4th step

3rd step

IUPUI

Introduction (2/2)

Introduction

3. Challenges for designing a scalable clustering algorithm:
A. Frequent synchronization can affect performance.

• Synchronization is needed after each iteration for parallel K-means.
B. Visiting all data points at every iteration results in a poor data locality.

4. To solve the previous two challenges, we use:
A. software blocking (tiled data layout in next slide)

• solve 2nd challenge
B. design a new synchronization-reducing clustering algorithm.

• solve 1st challenge

IUPUI

Data layout

Algorithm

An example of tiled data layout:

• Given 9 objects, each object has 5

dimensions.

• As shown in the figure, each block (or

tile) has 3 objects.

• Totally there are 3 blocks (or tiles).

Data layout for 9 objects with block size equal to 3

IUPUI

Algorithm

Main body of the
synchronization-reducing
algorithm

1. Local optimization function is
used to cluster each block
iteratively without any
communication

2. Merge function is used to merge
each block’s local information.

3. Converge or not

Select k points as
initial center

Apply local optimization
function to each block

Call merge function to merge
information from each block

and update center

Exit

Y

N

1st step

2nd step

3rd step

new cost >= old cost

Main body of the algorithm includes 3 steps:

IUPUI

Algorithm

Intuition of the local optimization function

• Two data blocks: red and blue.
• Each red and blue block can find 3 clusters independently.

• Their merged results are still correct.

Merged cluster 0

Merged cluster 1

Merged cluster 2

IUPUI

Algorithm

Local optimization
function

1. There are 3 steps.

2. Threshold is introduced as

the stop condition.

• Most often the progress is too

small after a few local

iterations

Use the global center
as initial center

Assign each point to its
closest center

Update centers and local new
cost

Return local
information

Y

N

1st step

2nd step

3rd step

local_new_cost >= threshold * local_old_cost

IUPUI

The previous algorithm has some issues…

Algorithm

• For some datasets, it shows a slower convergence rate than K-means.

• i.e., not always faster

• Hence, we propose the new Annealing-enhanced algorithm

IUPUI

Algorithm

Motivation of using annealing

1. Similar to the game of getting a ball into the
lowest crevice.

2. Hard shaking can avoid the ball stuck at local
lowest crevice.

3. Also, the ball may roll by itself most of the time.

4. We use frequent synchronization (annealing
steps) to simulate “hard shaking”, and use local
optimization to simulate “ball rolling on its own”

From https://www.dutchcrafters.com/American-Made-Wooden-Marble-Pyramid/p/54435

IUPUI

Algorithm
Select k points as

initial center

Apply local optimization
function to each block

Call merge function to merge
information from each block

and update center

new cost >= old cost
#loop++

Exit

Y

N

1st step

2nd step

3rd step

Apply
K-means
function
to each
block

N

Y

The annealing-

enhanced algorithm
#loops < #annealing steps ?

1. Two types of functions
will be used:
• The previous local

optimization
function

• The one-step K-
means function on
each block

2. 3 steps are included in
this algorithm.

IUPUI

Algorithm

But, how to choose #annealing steps?

• Problem of annealing-enhanced algorithm: Too small or too large number

of annealing steps will cause slower convergence.

• How to determine the number of annealing steps?

• We introduce Valley-searching heuristics.

IUPUI

Algorithm

Heuristics to decide the number of annealing
steps

#reassignment
points is small ?

Stop annealing

there exist λ consecutive iterations
with similar #reassignment ?

N

N

Y

Y

1st step

2nd step

3rd step

1. Using “progression-state”
metrics, such as
1. number of reassignment

objects
2. cost improvement

2. Valley-searching heuristics
follows 3 steps:
1. Find the possible stop places
2. Verify for the possible stop

place
3. Stop annealing

IUPUI

Parallel implementation (1/2)

Parallel implementation

• Hybrid MPI/Pthread

computing model

• Root process is

responsible for the

distribution of data.

Data distribution example: given 8 data points and
each block contains 1 data point, distribution of data
into 2 processes (each process has 2 threads), each
thread gets 2 blocks

IUPUI

Parallel implementation (2/2)
Parallel implementation

• 3 levels of merge includes from block to thread, from

thread to process, from process to global.

IUPUI

Experimental results

Experiment

We perform 3 types of
experiments using 3 datasets
on a Cray XE6/XK7 system.

1. Parameter effect

2. Sequential program
performance

3. Parallel performance

Datasets used to test

Datasets MNIST CIFAR10 CIFAR100

#Clusters 10 10 100

#Data points 10,000 60,000 60,000

Dimensions 784 3,072 3,072

Dataset size 17MB 626MB 629MB

IUPUI

Experimental results

Parameter effect: #annealing steps

• Effect of the number of annealing steps using CIFAR100 dataset
• There exist an optimal number of annealing steps
• 100 is the best number of annealing steps for this case

Annealing
steps

SSE (sum of square
error) cost

#Iterations Time
(seconds)

50 39.884×109 140 613.72

75 39.885×109 151 502.88

100 39.886×109 124 238.8

125 39.884×109 208 540.33

IUPUI

Experimental results

Parameter effect: stop condition

• Effect of the stop condition using MNIST dataset
• Large threshold can decrease the #iterations.
• Smallest execution time is obtained by setting threshold=99% in this case.

Threshold (local
stop condition)

SSE cost #Iterations Time
(seconds)

90% 25.332×109 32 12.59

95% 25.332×109 32 12.59

99% 25.335×109 26 10.22

100% 25.541×109 21 14.33

IUPUI

Experimental results

Sequential program performance

Dataset K-means Annealing-enhanced

SSE cost #iterations SSE cost #iterations

MNIST 25.322×109 106 25.329×109 54

CIFAR10 47.437 ×109 88 47.437 ×109 80

CIFAR100 39.884 ×109 201 39.886 ×109 124

• Cost and #iterations comparison between our algorithm and K-means algorithm
• Our algorithm can obtain similar SSE with less #iterations

IUPUI

Experimental results

Sequential program performance

Dataset K-means execution time
(seconds)

Annealing-enhanced
(seconds)

MNIST 15.6 8.9

CIFAR10 303.5 295

CIFAR100 6700.6 5650

• Sequential version’s executing time on different datasets using standard K-
means and annealing-enhanced algorithm

• Our annealing-enhanced algorithm is faster than standard k-means

IUPUI

Experimental results

Parallel performance

• Scalability test of CIFAR10 and MNIST dataset using 1 to 32 cores.
• Our implementation presents good scalability and is 19% faster than

standard K-means algorithm

CIFAR10 scalability MNIST scalability

IUPUI

Conclusion and future work
Conclusion & future work

1. To design a more scalable clustering algorithm, we propose a
tile-based synchronization-reducing algorithm.

2. Annealing-enhanced algorithm was designed to tackle the
problem of original sync-reducing method’s slow convergence
rate. New heuristics are introduced to support the algorithm.

3. We design and develop a parallel implementation of the
annealing-enhanced algorithm using hybrid MPI/Pthread model,
providing faster performance than K-means.

4. Our future work is to extend this idea to support other machine
learning methods

IUPUI

Thank You!

