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Background: Abundant Overhead Imagery

« Earth imaging satellites are generating
more data at a faster pace than ever.
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« About 70% of the earth is covered by
clouds.

« Imaging scientists care about clouds for
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(e.g. climate scientists)
 the clouds are in the way
(e.g. geographers or cartographers)

Digitalglobe constellation as of October 2015
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Background: Approaches for Cloud Detection

- Radiometric feature-based algorithms which utilize exact spectral
bands that manifest cloud characteristics.

» Temporal images

« Methods that use spectral characteristics as well as texture and/or
spatial data

These algorithms rely on hand-engineered feature extraction.
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Our Approach: Deep Learning...

Convolutional Neural Networks

Learn general features from
training data (WorldView-2)
Extensible across spectral
bands (trained with RGB and IR)
Fast inferencing with GPUs
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What are convolutional neural networks (CNNs)?
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What Is required to deploy a CNN?

Choose Network Topology: Basket of
Sequence of Layer Types Layer Types
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What Is required to deploy a CNN?

For each layer:
Assign values to layer hyper-parameters
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Current Approaches to Hyper-parameter Optimization

« Use out-of-the-box network

— Why spend time trying to create your own network when there are already so many good
ones available? Surely, one of those networks will also solve your problem.
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Unimportant parameter
Unimportant parameter

 Tune an out-of-the-box network

Important parameter Important parameter

o Hyper_param eter Sweeps Bergstra, J, and Bengio, Y. Random Search for Hyperparameter
Assumes |ndependence Of hyper-parameters Optimization, Journal of Machine Learning Research, Feb. 2012.
— Grid search

Requires training an exponential number of networks (infeasible)

— Random search
Significant improvement over grid search, but doesn’t make use of information learned during
training.
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Improving random search

Bad
Hyperparameters

Good
Hyperparameters
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RAVENNA: RApidly Evolving Neural Network
Architectures

o, [Train Rendom Networks |
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Train Random Networks

Train Random Networks RAVENNA:

* Implemented in Apache-Spark
= Extremely parallel
» Fault tolerant

Train Random Networks = Widely available

 Uses caffe to train networks
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in parallel
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Train SVM-approved Networks

Train SVM-approved Networks Train networks
Train SVM-approved Networks in parallel

Train SVM-approved Networks

MAP
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Optimizing LeNET for cloud detection
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How much does RAVENNA improve random search?

Random Search RAVENNA
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But, optimal hyper-parameters are intuitive right?
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What does 97.1% accuracy mean Iin practice?
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What does 97.1% accuracy mean in practice?
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What does 97.1% accuracy mean in practice?

Network’s Cloud
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Conclusion

* We demonstrated RAVENNA's ability to optimize the hyper-
parameters of a fixed network topology by applying it to the specific
task of cloud detection in overhead imagery.

 RAVENNA's optimized network outperformed GoogLeNET by:
— More than 40% reduction in error
— More than 200x speedup in inference time
— Memory requirements less than 1/10™ that of GoogLeNET.

 RAVENNA used 4000 nodes of Titan for 1 hour for optimization.
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