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In this talk we examine how high 

performance computing has changed over 

the last 10-year and look toward the future 

in terms of trends. These changes have had 

and will continue to have a major impact on 

our software.  Some of the software and 

algorithm challenges have already been 

encountered, such as management of 

communication and memory hierarchies 

through a combination of compile--time and 

run--time techniques, but the increased scale 

of computation, depth of memory 

hierarchies, range of latencies, and increased 

run--time environment variability will make 

these problems much harder.  
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Introduction (1/2)

Introduction

1. Clustering is one of the most 

important data summarization 

methods. 

2. Standard K-means works in 4 

steps as shown in right figure. 

Randomly select k 
points as initial centers

Assign each point to its 
closest center

Update k centers and cost

Convergence
condition is 

met?

Exit

Y

N

1st step

2nd step

4th step

3rd step
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Introduction (2/2)

Introduction

3. Challenges for designing a scalable clustering algorithm: 
A. Frequent synchronization can affect performance.

• Synchronization is needed after each iteration for parallel K-means.
B. Visiting all data points at every iteration results in a poor data locality.

4. To solve the previous two challenges, we use:
A. software blocking (tiled data layout in next slide)

• solve 2nd challenge
B. design a new synchronization-reducing clustering algorithm. 

• solve 1st challenge
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Data layout

Algorithm

An example of tiled data layout:

• Given 9 objects, each object has 5 

dimensions.

• As shown in the figure, each block (or 

tile) has 3 objects.

• Totally there are 3 blocks (or tiles).

Data layout for 9 objects with block size equal to 3
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Algorithm

Main body of the 
synchronization-reducing 
algorithm

1. Local optimization function is 
used to cluster each block 
iteratively without any 
communication

2. Merge function is used to merge 
each block’s local information. 

3. Converge or not

Select k points as 
initial center

Apply local optimization 
function to each block

Call merge function to merge 
information from each block 

and update center

Exit

Y

N

1st step

2nd step

3rd step

new cost >= old cost

Main body of the algorithm includes 3 steps: 
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Algorithm

Intuition of the local optimization function

• Two data blocks: red and blue.
• Each red and blue block can find 3 clusters independently. 

• Their merged results are still correct.

Merged cluster 0

Merged cluster 1

Merged cluster 2
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Algorithm

Local optimization 
function

1. There are 3 steps.

2. Threshold is introduced as 

the stop condition.

• Most often the progress is too 

small after a few local 

iterations

Use the global center 
as initial center

Assign each point to its 
closest center

Update centers and local new 
cost

Return local 
information

Y

N

1st step

2nd step

3rd step

local_new_cost >= threshold * local_old_cost
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The previous algorithm has some issues…

Algorithm

• For some datasets, it shows a slower convergence rate than K-means. 

• i.e., not always faster

• Hence, we propose the new Annealing-enhanced algorithm
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Algorithm

Motivation of using annealing

1. Similar to the game of getting a ball into the 
lowest crevice.

2. Hard shaking can avoid the ball stuck at local 
lowest crevice. 

3. Also, the ball may roll by itself most of the time.

4. We use frequent synchronization (annealing 
steps) to simulate “hard shaking”, and use local 
optimization to simulate “ball rolling on its own”

From https://www.dutchcrafters.com/American-Made-Wooden-Marble-Pyramid/p/54435
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Algorithm
Select k points as 

initial center

Apply local optimization 
function to each block

Call merge function to merge 
information from each block 

and update center

new cost >= old cost 
#loop++

Exit

Y

N

1st step

2nd step

3rd step

Apply 
K-means 
function 
to each 
block

N

Y

The annealing-

enhanced algorithm
#loops < #annealing steps ?

1. Two types of functions 
will be used:
• The previous local 

optimization 
function

• The one-step K-
means function on 
each block  

2. 3 steps are included in 
this algorithm. 
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Algorithm

But, how to choose #annealing steps?

• Problem of annealing-enhanced algorithm: Too small or too large number 

of annealing steps will cause slower convergence.  

• How to determine the number of annealing steps?

• We introduce Valley-searching heuristics.
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Algorithm

Heuristics to decide the number of annealing 
steps

#reassignment 
points is small ?

Stop annealing 

there exist λ consecutive iterations 
with similar #reassignment ?

N

N

Y

Y

1st step

2nd step

3rd step

1. Using “progression-state” 
metrics, such as
1. number of reassignment 

objects 
2. cost improvement

2. Valley-searching heuristics 
follows 3 steps:  
1. Find the possible stop places
2. Verify for the possible stop 

place
3. Stop annealing
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Parallel implementation (1/2)

Parallel implementation

• Hybrid MPI/Pthread

computing model

• Root process is 

responsible for the 

distribution of data. 

Data distribution example: given 8 data points and 
each block contains 1 data point, distribution of data 
into 2 processes (each process has 2 threads), each 
thread gets 2 blocks
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Parallel implementation (2/2)
Parallel implementation

• 3 levels of merge includes from block to thread, from 

thread to process, from process to global.
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Experimental results

Experiment

We perform 3 types of 
experiments using 3 datasets 
on a Cray XE6/XK7 system.

1. Parameter effect

2. Sequential program 
performance

3. Parallel performance

Datasets used to test

Datasets MNIST CIFAR10 CIFAR100

#Clusters 10 10 100

#Data points 10,000 60,000 60,000

Dimensions 784 3,072 3,072

Dataset size 17MB 626MB 629MB
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Experimental results

Parameter effect: #annealing steps

• Effect of the number of annealing steps using CIFAR100 dataset
• There exist an optimal number of annealing steps 
• 100 is the best number of annealing steps for this case

Annealing 
steps

SSE (sum of square
error) cost

#Iterations Time 
(seconds)

50 39.884×109 140 613.72

75 39.885×109 151 502.88

100 39.886×109 124 238.8

125 39.884×109 208 540.33
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Experimental results

Parameter effect: stop condition

• Effect of the stop condition using MNIST dataset
• Large threshold can decrease the #iterations. 
• Smallest execution time is obtained by setting threshold=99% in this case.

Threshold (local 
stop condition)

SSE cost #Iterations Time 
(seconds)

90% 25.332×109 32 12.59

95% 25.332×109 32 12.59

99% 25.335×109 26 10.22

100% 25.541×109 21 14.33
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Experimental results

Sequential program performance

Dataset K-means Annealing-enhanced

SSE cost #iterations SSE cost #iterations

MNIST 25.322×109 106 25.329×109 54

CIFAR10 47.437 ×109 88 47.437 ×109 80

CIFAR100 39.884 ×109 201 39.886 ×109 124

• Cost and #iterations comparison between our algorithm and K-means algorithm
• Our algorithm can obtain similar SSE with less #iterations  
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Experimental results

Sequential program performance

Dataset K-means execution time
(seconds)

Annealing-enhanced 
(seconds)

MNIST 15.6 8.9

CIFAR10 303.5 295

CIFAR100 6700.6 5650

• Sequential version’s executing time on different datasets using standard K-
means and annealing-enhanced algorithm

• Our annealing-enhanced algorithm is faster than standard k-means
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Experimental results

Parallel performance

• Scalability test of CIFAR10 and MNIST dataset using 1 to 32 cores. 
• Our implementation presents good scalability and is 19% faster than 

standard K-means algorithm 

CIFAR10 scalability MNIST scalability
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Conclusion and future work 
Conclusion & future work

1. To design a more scalable clustering algorithm, we propose a 
tile-based synchronization-reducing algorithm. 

2. Annealing-enhanced algorithm was designed to tackle the 
problem of original sync-reducing method’s slow convergence 
rate. New heuristics are introduced to support the algorithm.

3. We design and develop a parallel implementation of the 
annealing-enhanced algorithm using hybrid MPI/Pthread model, 
providing faster performance than K-means.

4. Our future work is to extend this idea to support other machine 
learning methods
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Thank You!


