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Half-precision training: motivation and challenges (I)
Motivation

• Optimize memory bandwidth

• Ability to train models with 2x parameters  

• Optimize network bandwidth

• Faster training

• Improve maximum computational throughput

• Ability to train with larger mini-batch size

Challenges 

• IEEE 754 FP16 has a narrow numerical range 

• Overflow problem: Inf/NaN cause 
irreversible damage to training (quite rare)

• “Vanishing gradient“ (quite common)

• Small valued gradients

• Large ratio of weight to weight gradient

Subnormal range: [2-24,2-14]       Normal range: [2-14,65504]
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Physics problem we are trying to solve
• Fusion energy: a clean source of energy that can be produced on Earth in a tokamak-style fusion reactor

• Tokamak: a type of design for a nuclear fusion device. It is a torus-shaped vacuum chamber surrounded by magnetic coils

• Existing tokamak-style fusion reactors: JET, DIII-D, NSTX

• Plasma disruptions are large macroscopic instabilities resulting in:

• Loss of confinement – ends fusion reaction

• Intense radiation – damaging concentration in small areas

• Current quench – produces high magnetic forces

• The prediction and avoidance of disruptions has 
been proven to be unavoidable aspect of 
tokamak operation, especially in high performance 
regime

• ITER is the key experimental step between today's fusion 
research machines and tomorrow's fusion power plants

• ITER cannot tolerate disruptions at maximum current



Datasets: JET
• Test on a real scientific dataset from Joint European Torus (JET) experiment

• The JET dataset consists of time series containing multi-modal sensory measurements including scalar and 1D arrays, collected 
with a sampling rate of 1 ms

• 10% of shots end with disruption

• JET experiment produces order of Terabyte of data per day

• 55 GB per shot

• Over 350 TB with multi-dimensional time traces to be analyzed

• Repeat test on the Large Movie Review Dataset (IMDB), 
which is a benchmark dataset in machine learning community

# Shots Disruptive Non-disruptive Totals

Carbon Wall 324 4029 4353

Beryllium Wall 
(ITER-like wall)

185 1036 1221

Totals 509 5065 5574

Sample scalar time series
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Training flow (I)

Forward pass: mostly 
matrix and element-wise 
multiplications

Backprop: chain-rule 
differentiation,
element-wise multiplications

Optimizer weight update:
multiply gradients by learning
rate (e.g. SGD)
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Training flow: distributed data parallel training (II)
(Step 3) Update optimizer internal state and global weights 
using the global gradient

Replica 1

GPU worker

Replica 2

GPU worker

Replica 3

GPU worker

Replica 4

GPU worker

Replica N

GPU worker

Average local gradients 
collected from workers

(Step 2) Aggregate local gradients 
from each worker using 
MPI_Allreduce, then average them

(Step 4) 
MPI_Broadcast
global parameters 
after update
back to workers, 
repeat (Step 1)

𝑊@ABC)A4 = 𝑊@ABC)A4 − 𝜆𝛿𝑊@ABC)A4

(Step 0) Initialize network parameters randomly, based on the model configuration

(Step 1) Perform fprop and 
bprop on each worker



Fusion Recurrent Neural Net (FRNN) schematic

Signals

LSTM

Output

> Threshold?

Alarm

Output: Disruption coming?

RNN Architecture:
• LSTM, 3 layers
• 300 hidden units per cell
• Stateful, returns sequences

Signals

LSTM

Output

Alarm

Signals

LSTM

Output

Alarm

Internal 
State

T = 0 T = 1 T = t

0D signals 1D 0D signals 1D 0D signals 1D

1D signals 1D signals 1D signals

CNN CNN CNN

CNN architecture:
• Number of convolutional filters: 10
• Size of convolutional filters: 3
• Number of convolutional layers: 2
• Pool size: 2

Time-distributed FC layer
Time-distributed FC layer 
• apply to every temporal slice on 

LSTM output 



Enabling Float16 training (I)
Master copy of weights

• Store weights, activations and gradients in FP16, perform weight update in FP32

• Solves “vanishing gradient” problem during

• Disadvantage: conversion between FP32 and FP16 may be slow; extra memory to keep an extra copy of weights in FP32

Weight quantization

• Quantization is an umbrella term that refers to a set of data compression techniques  

• E.g.: binarization: encode data in k=2 bits

• Ex. quantization compression approach for a layer: 
store the min and max for each layer, then compress each 
float value to a k-bit (k < 32 bits) integer representing 
the closest real number in a linear set of 2k within the range

• All of these approaches leave the gradients unmodified in 
single-precision and therefore the computation cost during bprop is unchanged

• Can’t use regular optimizer as derivatives are often zero 

Input Layer

Quantize

Quantize Activation

Min Max

Dequantize

Output layer

Max

Max

Max

Min

Min

Min

k bit

k bit

k bit



Enabling Float16 training (II)
• Loss scaling: shift gradients to occupy higher bins of FP16 representable range, which are not used

• Apply a scalar factor to the loss function before backpropagation step

• Unscale weight gradients before the update step to maintain the magnitude of updates the same as for FP32; alternatively re-
tune the hyperparameters

• Scaling factors will depend on the neural network/dataset in hand
• FRNN training on JET dataset required loss scale factor of 10 (i.e 3 exponent values to the right)

FP16 representable range FP16 representable rangeScale factor of 10 shifts
by 3 exponent values right

Everything below is irrelevant 
for training



Hardware specifications

• Scaling tests are performed on Princeton University “Tiger” cluster

• Theoretical peak performance of 27 petaflops

• 320 NVIDIA Tesla P100 GPUs PCIe across 80 Intel Broadwell nodes

• Nodes on the cluster are interconnected by Intel OmniPath high-speed interconnect

• GPU Direct, PSM2 10.3.3

• SLURM scheduler

• NVIDIA GPUs with compute capability 5.3 and later
support FP16 math, arithmetics and comparisons 

• The latest generation of Intel CPUs (e.g. Haswell,
Broadwell) provide a capability for converting between single 
and half in hardware by means of the F16C instruction set



Performance comparison
• Use validation level area under the ROC and AUC (area under curve) to characterize the quality of FRNN and 

applicability of the half-precision training

• Validation level AUC as a function of epoch show similar shapes for both FP16 and FP32 

• Reaching the plateau at around AUC=0.87 by the epoch 6

• SGD optimizer with momentum, loss scaling factor=10

The test set AUC=0.96 for 
both the FP16 and FP32

Base  learning  rate
λ0  =  0.0004

Base  learning  rate  
λ0  =  0.001



Data  parallel  training:  time  per  epoch

Compute time per 
epoch is constant

Number of batches

MPI communication per mini-batch 
is logarithmic



FRNN scaling (I)
• Our  goal  is  to  develop  portable  ML  software  for  plasma  disruption  
forecasting  that  would  allow  for  rapid  training  on  GPU  clusters

• Tests  on  OLCF  Titan  CRAY  supercomputer

• Strong  linear  runtime  scaling  and  logarithmic  communication  time

• OLCF  Director’s  Discretionary  Award:    Scaling  Studies  on  Titan
• Thousands  of  Tesla  K20  GPUs

Scaling up to 6000 GPUs

Manuscript in preparation: "Disruption Forecasting in Tokamak Fusion Plasmas using Deep Recurrent Neural Networks", 
J. Kates-Harbeck, A. Svyatkovskiy, K. Felker, E. Feibush, W. Tang, 2017



FRNN scaling (II)
• Strong linear runtime scaling and logarithmic communication complexity hold for F16 training

• Possibility for training with larger mini-batches with FP16: double mini batch size keeping for the same memory 
bandwidth the same

Roughly  2x  faster  processing  times  per  epoch  with  
FP16 due  to  increased  mini-­batch  size

Precision Npar (million 
parameters)

Nlayers Batch size

FP64 4.6 15 256

FP32 9.2 29 256

FP16 18.2 58 256

FP64 18.2 58 64

FP32 36.3 118 64

FP16 72.1 234 64

Maximum  number  of  trainable  parameters,  batch  size,  
and  equivalent  model  depths  fitting  in  Tesla  P100  GPU  
device  memory  in  half-­precision,  single  and    double  
floating  point  precision



Summary and Next steps
• Developed a deep learning framework integrating TensorFlow with custom parameter averaging and global weight update 

routines implemented with CUDA-aware MPI intended for disruption forecasting in tokamaks

• Distributed data-parallel synchronous SGD approach with strong nearly linear runtime scaling on GPU clusters  

• Learning rate scheduling approach to facilitate model convergence when training on HPC clusters with O(100) worker GPUs

• Evaluated training of deep RNNs with half-precision floats on that framework

• Use scientific JET plasma disruption time series dataset

• Cross check with benchmark IMDB dataset

• Use loss scaling approach to facilitate model convergence at FP16

• Obtained comparable validation level performances at the end of each epoch for half and single floating point precisions

• FP16 optimizes memory and network bandwidths, allowing the training of models with over 70 million trainable parameters

• Ability to use large mini-batch sizes

• Look forward for opportunities to deploy FRNN on Volta GPU to take advantage of Tensor Cores



Backup



Half-precision training (I)
Half-precision training:

• Store weights, activations and gradients in FP16

• Perform matrix and element-wise multiplications, reduction ops in FP16 (including during fprop, bprop and weight update)

• You already know it is possible to perform FP16 math, arithmetics and comparisons on NVIDIA GPUs with compute capability 5.3 and 
greater

• CUDA half intrinsics (round to nearest even): http://docs.nvidia.com/cuda/cuda-math-
api/group__CUDA__MATH__INTRINSIC__HALF.html#group__CUDA__MATH__INTRINSIC__HALF

• TensorFlow has DT_HALF registered type: 
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/framework/types.cc

• We add a custom MPI datatype of 2 contiguous bytes: https://github.com/PPPLDeepLearning/plasma-
python/blob/master/plasma/primitives/ops.py

• This talk:

• Review techniques to enable FP16 and mixed precision training

• Introduce FRNN framework for disruption forecasting in tokamak fusion plasmas , discuss strong scaling

• Evaluate FP16 training on FRNN framework and a real scientific dataset from JET experiment  

• Evaluate FP16 training on the benchmark IMDB dataset



Plasma disruption characteristics
• Plasma disruptions are large macroscopic instabilities resulting in:

• Loss of confinement – ends fusion reaction

• Intense radiation – damaging concentration in small areas

• Current quench – produces high magnetic forces

• Time scale: milliseconds

• Need at least 30 ms warning to mitigate – rapid forecasting is necessary

• Consequences: more severe with higher volume-to-surface area ratio

• The prediction and avoidance of disruptions has been proven to be unavoidable aspect of tokamak operation, 
especially in high performance regime



FRNN package structure
• Python deep learning code for disruption prediction in fusion (tokamak) experiments 

• https://github.com/PPPLDeepLearning/plasma-python

Primitives

Preprocessing

Models

Utils

Abstractions specific to the domain
Shots, Machines and Signals

Preprocessing and normalization classes, including the methods 
necessary to prepare physical data for stateful LSTM training

Python classes necessary to build, train and optimize deep NN 
models. Including a distributed data-parallel synchronous 
implementation of optimizer. FRNN integrates Tensorflow with 
CUDA-aware MPI for communication, enabling the use of high-
speed interconnects on the cluster (OmniPath) and the GPUDirect
technology

Auxiliary functions for preprocessing, performance evaluation and 
learning curves analysis.

•Dependencies: 
–Tensorflow 1.3, Keras 2.0.6, OpenMPI 2.1.0, CUDA 8, CuDNN 6
–Pathos



Recurrent Neural Nets: basic description
• RNNs are a family of neural networks to process sequential data

• Feed forward equations are recurrent: 
𝑎 𝑡 = 𝑏 +𝑊ℎ 𝑡 − 1 + 𝑈𝑥(𝑡)

ℎ 𝑡 = tanh 𝑎 𝑡
𝑜 𝑡 = 𝑐 + 𝑉ℎ(𝑡)

L

o

h

x

y

U

WV

Unfold
Notations:
x – input sequence,
U – is the input to hidden weight matrix,
W - hidden to hidden,
V – hidden to output weights
b,c are the biases
tanh() is the activation function (non-linearity)
o – output sequence
Loss L and target values are denoted as y

U U

h(t-1) h(t) h(…)h(…)
W W W

x(t-1) x(t)

o(t-1) o(t)

L(t-1) L(t)

y(t-1) y(t)



Gated units, LSTM cell
• LSTM is a gated RNN

• LSTM introduces a self-loop – an internal recurrence, in addition to the outer recurrence of the RNN

• The	
  weight	
  of	
  this	
  self-­‐‑loop	
  is	
  controlled	
  by	
  a	
  forget	
  gate	
  – a	
  notion	
  of	
  memory	
  as	
  input	
  sequence	
  is	
  fed	
  to	
  the	
  model,	
  
some	
  information	
  is	
  accumulated	
  in	
  the	
  internal	
  memory

• LSTMs	
  are	
  stateful,	
  as	
  opposed	
  to	
  feedforward neural	
  networks

• 𝑓" 𝑡 = 𝜎(𝑏"
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o𝑥q 𝑡q +	
  ∑ 𝑊"q
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• 𝑠" 𝑡 = 𝑓" 𝑡 𝑠" 𝑡 − 1 + 𝑔" (𝑡)𝜎(𝑏" + ∑ 𝑈"q 𝑥q 𝑡q + 	
  ∑ 𝑊"q ℎq 𝑡 − 1q )
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  ∑ 𝑊"q
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Notations:
x – input sequence,
U – is the input to hidden weight matrix,
W - hidden to hidden,
V – hidden to output weights
b,c are the biases
tanh() is the activation function (non-linearity)
s – state unit
f- forget gate unit
g-external input gate unit
q-output gate unit



Benchmark with IMDB dataset
• IMDB: the Large Movie Review Dataset

• Contains movie reviews along with their associated binary sentiment polarity labels.

• Comprises 50000 reviews split evenly between train and test

Validation  level  AUC  per  epoch  calculated  for  FP16  and  FP32  precisions  for  the  Large  Movie  Review
Dataset.  Left:  base  learning  rate  λ0  =  0.02,  right:  base  learning  rate  λ0  =  0.05.



Model convergence at large N
• Learning rate schedule is crucial to facilitate model convergence during distributed training when the effective mini-batch 

size is large

• We use exponential learning rate decay with adjustable base learning rate

• Effective batch size is multiplied by the number of 
workers

• In a distributed regime, the base learning rate is reduced
as the number of workers N is increased

• Learning rate is clipped

𝜆" = 𝜆s𝛾"

𝜆s(𝑁,𝑛) =
𝜆s

1.0 +𝑁/𝑛



Performance comparison
• Overall insights

• Deep learning appears competitive in raw performance and more suited to generalization

• Deep RNN can use 1D profiles efficiently

• On smaller, 0D, and more uniform datasets, “shallow” approaches are still competitive

Train set Test set Deep RNN Random Forest

JET (Carbon wall) JET (ITER-like wall) 0.96 0.88

DIII-D (+1D) DIII-D (+1D) 0.88 -

DIII-D DIII-D 0.84 0.85

DIII-D JET (ITER-like wall) 0.82 0.51

JET (Carbon wall) DIII-D 0.67 0.62

ROC area @30 ms before disruption
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• At each timestep: arrays instead of scalars
• All as a function of ρ (normalized flux surface)
• Examples:

• 1D Current profiles
• 1D Electron temperature profiles
• 1D Radiation profiles

Handling  high-­dimensional  data:  DIII-­D

ρ  =  0

ρ  =  1

Mazon,   Didier,  Christel  Fenzi,   and  Roland   Sabot.   "As  hot   as  it  gets."  Nature   Physics  12.1   (2016):  14-­17.
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Challenges of stateful LSTM training, 
sequences of variable length

• Lengths of shots in e.g. JET data vary by orders of magnitude:

• Minimum length: 1400

• Mean length: ~27,000

• Max: ~40,000 time-steps

• Zero-padding to the max length is not the best option 
with such spread in sequence lengths

• For a model to converge, the best approach is to feed subsequences of shot smaller length and do not reset states 
after each mini-batch

• Training is stateful when the last state for each sample at a timestep i in a mini-batch will be used as initial 
state for the sample of timestep i in the following mini-batch

• Reset states in the end of shot, individually

• The challenges is to implement a custom batch generator which would do that (see next slide)

Timesteps

Shot  lengths



Challenges of stateful LSTM training, 
sequences of variable lengths

• Implement a custom batch generator:
• Takes a list of shots (for instance 2800 shots, 

each shot a time series of 1400-40000 timesteps). 
9 scalar measurements at each time point

• Create Xbuff and Ybuff tensors each holding batch_size shots 
• Xbuff shape: (batch_size, Maximum shot length, dimension of data)

• Ybuff shape: (batch_size, Maximum shot length, 1)

• For each shot adjust the length to be a multiplier of the LSTM model length, e.g:
• Model length: 128 (hyper parameter, but generally << shot length)

• Shot length: 25000 timesteps, adjusted shot length: (Shot length//model length)*model length

• Fill an array end_indices: which contains lengths of shots

• Create a reset_batches boolean array containing indicating whether a model states need to be reset (if current shot just ended)

• Each time batch generator yields a tensor of shape (batch_size, model length, dim of data), re-adjusts the Xbuff and Ybuff shifting 
to the beginning of array by model length, decrements end_indices by model length and checks whether any of end_indices are less 
than zero (meaning we have hit end of shot for a shots at batch_idx)

• Once we hit the end of a shot, we do a partial batch reset, then fill in new shot at a batch_idx

Timesteps

Shot  lengths

Yield mini-batch 1
Yield mini-batch 2

Yield mini-batch 5,
reset model state for 
shot #1, fill new shot


