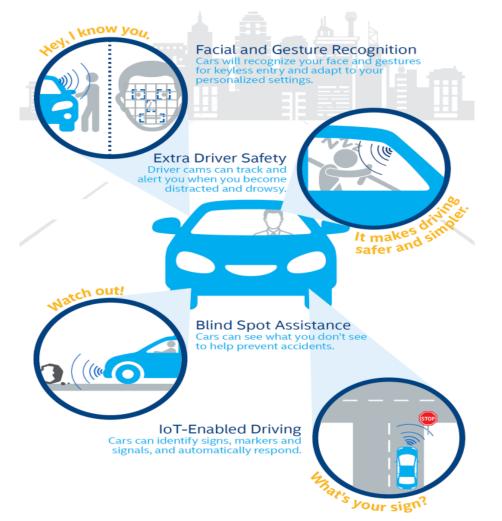
UNDEC

PARALLEL Q-LEARNING FOR IOT ENVIROMENTS

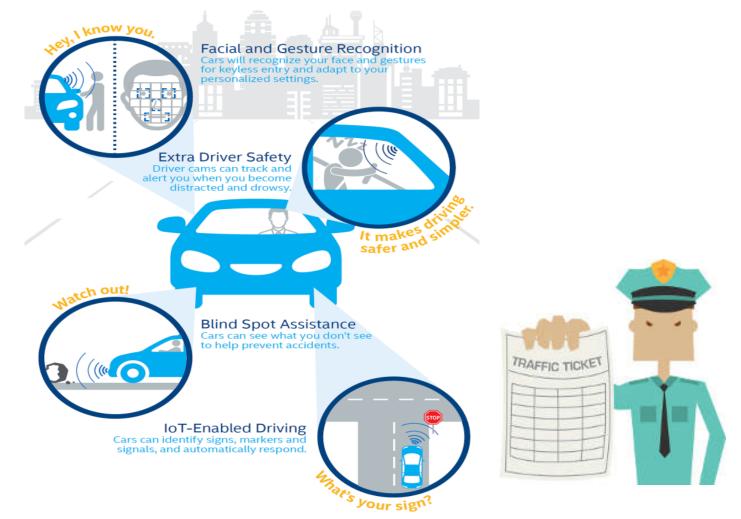
MIGUEL CAMELO, JEROEN FAMAEY AND STEVEN LATRÉ

PUBLIC

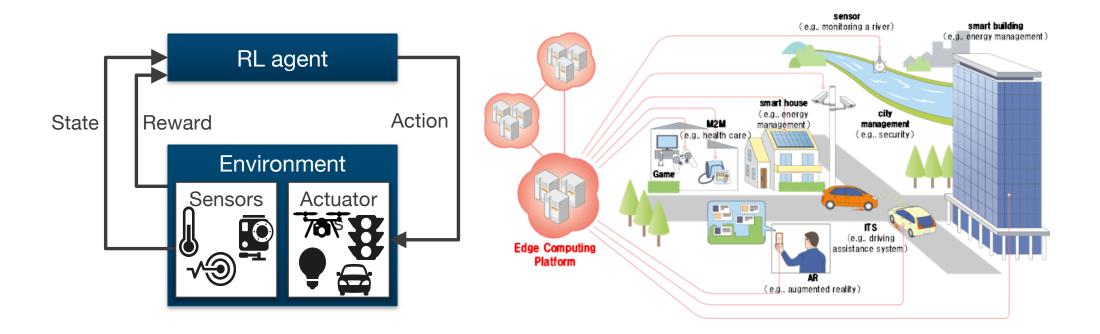
MANY IOT APPLICATIONS REQUIRE ADAPTIVE AND SMART CONTROL....



MANY IOT APPLICATIONS REQUIRE ADAPTIVE AND SMART CONTROL.... WITH LOW LATENCY



RLAS A MEANS TO CONTROL IOT DEVICES



PARALLEL Q-LEARNING FOR CONSTRAINED COMPUTING ENVIRONMENTS

Q-Learning (QL): Strengths and weaknesses

Traditional Parallel QL: the need of a new model for PQL

PQL with co-allocation of processing and data

Performance evaluation

PARALLEL Q-LEARNING FOR CONSTRAINED COMPUTING ENVIRONMENTS

Q-Learning (QL): Strengths and weaknesses

Traditional Parallel QL: the need of a new model for PQL

PQL with co-allocation of processing and data

Performance evaluation

Q-LEARNING (QL) IS A SIMPLE AND EFFICIENT RL ALGORITHM

Model free RL -> No previous information of the environment is needed.

Guarantee of convergence if tabular representation of Q-values.

Initiali	ze Q(s	, a) arbitraril	У				
		or each epis	ode):				
2.	Initialize s						
3.	Repeat (for each iteration inside of the episode):						
4.	(Choose a from s using policy derived from Q (e.g. ε -greedy)					
5.		Take action a, observe r, s'					
6.	($Q(s, a) \leftarrow Q(s, a) + \alpha [r + \gamma \max_{a'} Q(s', a') - Q(s, a)]$					
7.	5	s ← s'					
8.	Until s is terminal						
	S/A	a ₁	a ₂	a ₃		a _n	
	S 1	Q(s ₁ , a ₁)	Q(s ₂ , a_2)	Q(s ₃ , a ₃)		Q(s ₁ , a _n)	
	S ₂	Q(s ₂ , a ₁)	Q(s ₂ , a ₂)	Q(s ₂ , a ₃)		Q(s ₂ , a _n)	
	S ₃	Q(s ₃ , a ₁)	Q(s ₃ , a ₂)	Q(s ₃ , a ₃)		Q(s ₃ , a _n)	

 $Q(s_m, a_3)$

 $Q(s_m, a_n)$

...

 $Q(s_m, a_3)$

Sm

 $Q(s_m, a_3)$

MOST OF RL ALGORITHMS (INCLUDING QL) HAVE THREE MAIN LIMITATIONS

Sequential and designed for centralized environments.

Requires long training time to learn optimal policy.

Table-based algorithms have scalability issues in large scale problems.

ເຫາຍເ

PARALLEL QL AND COLLABORATIVE MA-QL REDUCE THE TRAINING TIME

Collaborative Multi-agent (MA) QL

- A unique environment is altered by actions of agents.
- Agents need to coordinate actions.

Parallel QL

- All agents learn same task
- Episodes can be reduced in a factor of 1/n
- There is guarantee of convergence

PARALLEL QL AND COLLABORATIVE MA-QL REDUCE THE TRAINING TIME

Collaborative Multi-agent (MA) QL

- A unique environment is altered by actions of agents.
- Agents need to coordinate actions.

Parallel QL

- All agents learn same task
- Episodes can be reduced in a factor of 1/n
- There is guarantee of convergence

Both approaches allow decentralized implementation

PARALLEL QL AND COLLABORATIVE MA-QL REDUCE THE TRAINING TIME

Collaborative Multi-agent (MA) QL

- A unique environment is altered by actions of agents.
- Agents need to coordinate actions.

Parallel QL

- All agents learn same task
- Episodes can be reduced in a factor of 1/n
- There is guarantee of convergence

Both approaches allow decentralized implementation

FUNCTION APPROXIMATORS (E.G. NEURONAL NETWORKS) DO NOT GUARANTEE CONVERGENCE

Neuronal Networks:

- Provide a compact representation of the Q-Table
- Allow solving problems with large number of states.

Neuronal Networks **do not**:

- Guarantee convergence.
- Provide simple and intuitive implementation.
- Slower to find optimal policy than table-based approach.

FUNCTION APPROXIMATORS (E.G. NEURONAL NETWORKS) DO NOT GUARANTEE CONVERGENCE

Neuronal Networks:

- Provide a compact representation of the Q-Table
- Allow solving problems with large number of states.

Neuronal Networks **do not:**

- Guarantee convergence.
- Provide simple and intuitive implementation.
- Slower to find optimal policy than table-based approach.

We need to go back to table-based approaches

່ເກາຍເ

PARALLEL Q-LEARNING FOR CONSTRAINED COMPUTING ENVIRONMENTS

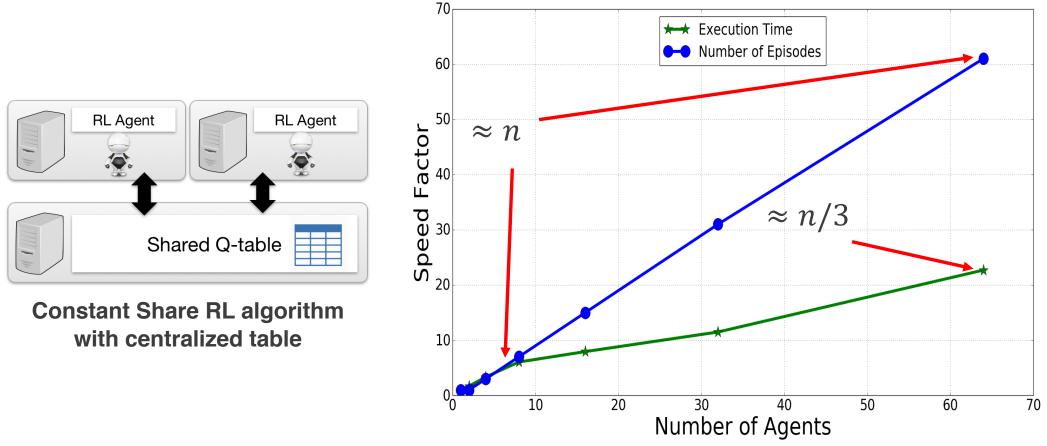
Q-Learning (QL): Strengths and weaknesses

Traditional Parallel QL: the need of a new model for PQL

PQL with co-allocation of processing and data

Performance evaluation

TRADITIONAL PQL: CENTRAL QT BOTTLENECK WITH HIGH-COST COMMUNICATION SCHEME



A MA-RL MODEL BASED ON FUNCTIONS PROVIDES THE FLEXIBILITY THAT WE NEED

Many MA-RL algorithms (including PQL) execute several (underlying) tasks while they are running

- Allocation of resources.
- Creation and deployment of RL agents.
- Synchronization among agents.
- Data collection.
- Execution of RL algorithm.
- Management of QT.

A MA-RL MODEL BASED ON FUNCTIONS PROVIDES THE FLEXIBILITY THAT WE NEED

Many MA-RL algorithms (including PQL) execute several (underlying) tasks while they are running

Function			
	 Allocation of resources. 		
	Creation and deployment of RL agents.		
Management	Synchronization among agents.		
	 Data collection. 		
Processing	Execution of RL algorithm.		
Storage	 Management of QT. 		

ເມງອັ

EACH FUNCTION IS ASSIGNED TO A SPECIFIC KIND OF AGENT

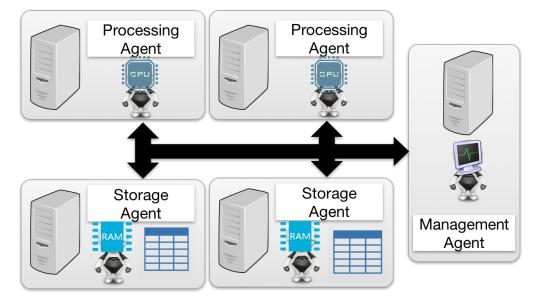
Processing agent (PrA)

• This is a QL agent that works on a (possible external) QT.

Storage Agent (StA)

- It stores (part of) the QT.
- It serves requests from PrA.

Constant Share RL algorithm modeled as a function of management, storage and processing agent

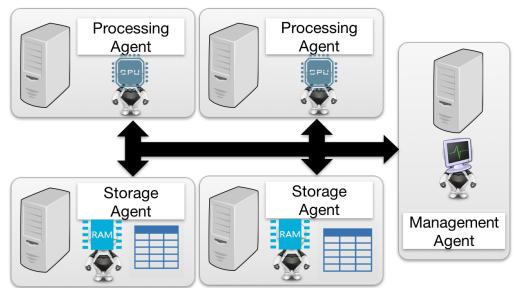


ເກາຍດ

EACH FUNCTION IS ASSIGNED TO A SPECIFIC KIND OF AGENT

Management agent (MngtA)

- Deploy StAs on available storage resources.
- Build and distributed QT among StAs.
- Deploy PrA on available processing resources.

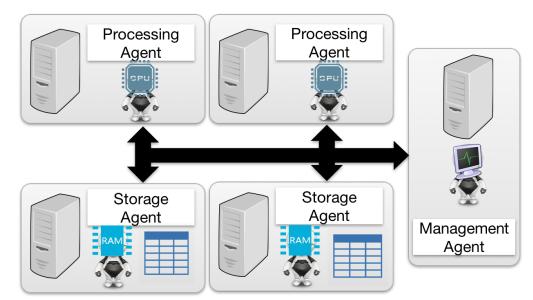


Constant Share RL algorithm modeled as a function of management, storage and processing agent

ເກາຍດ

THE NEW MULTI-AGENT MODEL ALLOWS A COMPLETE DECENTRALIZED EXECUTION

Applicable to many MA-RL algorithm



QT is not a bottleneck anymore

It can guarantee convergence

Constant Share RL algorithm modeled as a function of management, storage and processing agent

PARALLEL Q-LEARNING FOR CONSTRAINED COMPUTING ENVIRONMENTS

Q-Learning (QL): Strengths and weaknesses

Traditional Parallel QL: the need of a new model for PQL

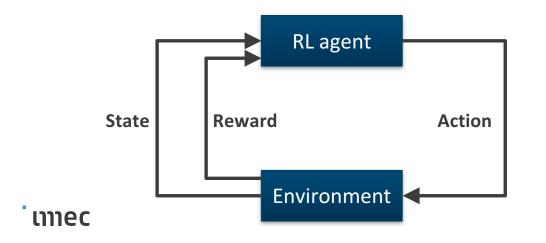
PQL with co-allocation of processing and data

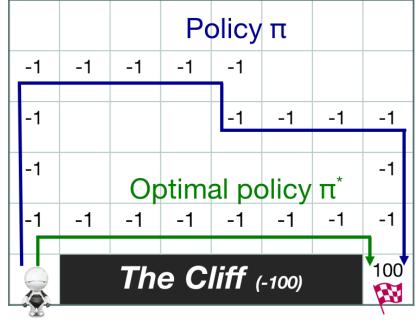
Performance evaluation

EXAMPLE: THE CLIFF PROBLEM

 Goal: The agent navigates a grid from start to goal without falling into the cliff.

Reward function: -100 if robot falls into the cliff -1 for each movement of the robot +100 if robot reaches the goal



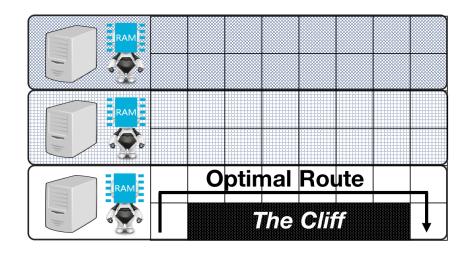


PCSP : PQL WITH CO-ALLOCATION OF STORAGE AND PROCESSING

.

	Algorithm 2 PQL with Co-allocation of Storage and Pro- cessing (PCSP)
Two main procedures:	Require: Number of states $ S $ and actions $ A $, Require: Set of physical nodes M 1: if $ M > 0$ then 2: Deploy a MngtA
 Creation and deployment of agents 	3: $q \leftarrow$ total available memory across physical nodes. 4: if $O(S A) \leq q$ then 5: Compute table partitions P 6: Deploy $n_s = P $ StA 7: Initialize the QT 8: Create and deploy n_p PrA
 QL execution 	9: while p has not converged, $\forall p \in PrA$ do 10: Execute QL on p, $\forall p \in PrA$ 11: end while 12: Obtain statics from p, $\forall p \in PrA$
	12:Obtain statics from $p, \forall p \in PrA$ 13:Retrieve the optimal policy π from QT14:end if15:end if
ເພາຍດ	16: return π

STORE CONSECUTIVES STATES IN THE SAME STA REDUCES THE COMMUNICATION COST



Two states s and s' are consecutives if s' is the next state of s' after execution some action.

Operations such as $max_{a'}Q(s', a')$ are completely local.

States of a (possible optimal) solution are managed by a few (maybe unique) StAs.

THE NUMBER OF STATES STORED PER NODE IS WELL-BALANCED ACROSS THE RESOURCES

 n_s (number of StAs) = P (number of partitions) $P = \left[\frac{c}{2}\right], c$ is the total processing resources. In homogeneous environments StA stores $\frac{|S||A|}{n_s}$ In heterogeneous environments each StA *i* stores s_i bits

$$\sum_{i=1}^{n_S} s_i = \Omega(|S||A|), 0 \le s_i \le |S||A|$$

EXPLOIT THE STORAGE OF CONSECUTIVES STATES BY DEPLOYING PRA NEXT TO STA

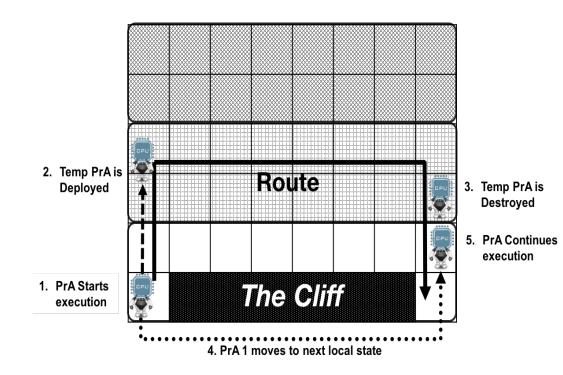
Deploy PrAs on nodes where StA have been already deployed

 n_p (number of PrAs) = n_s (number of StAs)

Minimum communication cost if PrA is exploring states managed by the co-allocated StA

In case of requiring states from remote StAs, a temporal PrA is deployed

DEPLOYING TEMPORAL PRA MINIMIZES NUMBER OF REQUESTS FROM ORIGINAL PRA TO REMOTE STAS.



Require: Access to Distributed Q-Table with |S||A| values 1: repeat(for each episode) 2: Initialize s 3: repeat(for each iteration) Use behavior policy to choose a 4: Take action a, observe r, s'5: if s' is not stored in any local StA then 6: Deploy temp PrA on node where s' is stored. 7: 8: repeat Wait 9: until temp PrA has finished 10: $s \leftarrow s'$ 11: 12: else $TDerror = \max_{a'} Q(s',a') - Q(s,a)$ 13: $Q(s,a) \leftarrow Q(s,a) + \alpha \cdot (r + \gamma \cdot TDerror)$ 14: 15: $s \leftarrow s'$ end if 16: until s is goal state 17: 18: until max episodes = true or convergence = true

Algorithm 3 Modified Q-Learning

ເກາຍດ

PARALLEL Q-LEARNING FOR CONSTRAINED COMPUTING ENVIRONMENTS

Q-Learning (QL): Strengths and weaknesses

Traditional Parallel QL: the need of a new model for PQL

PQL with co-allocation of processing and data

Performance evaluation

ເຫາຍເ

WE EVALUATED PCSP AGAINST SEVERAL QL ALGORITHMS UNDER TWO METRICS (EPISODES AND EXECUTION TIME)

The single-agent Q-learning algorithm (SQL)

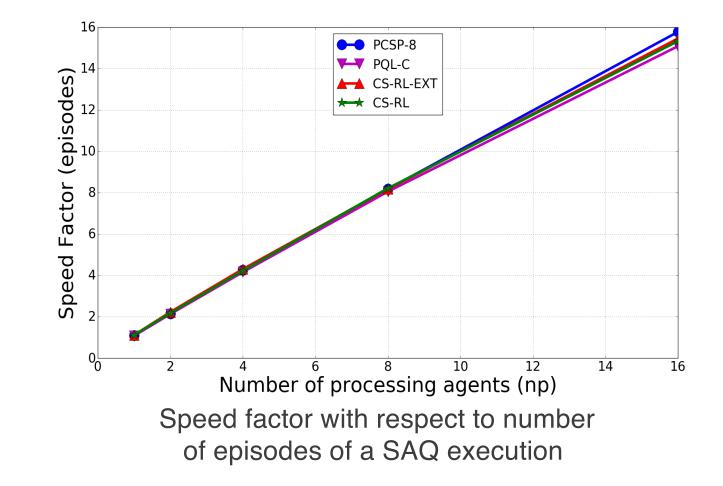
A naive implementation of the Constant Share RL (CS-RL) algorithm

An extended version of the CS-RL with local cache on the processing agents (CS-RL-EXT)

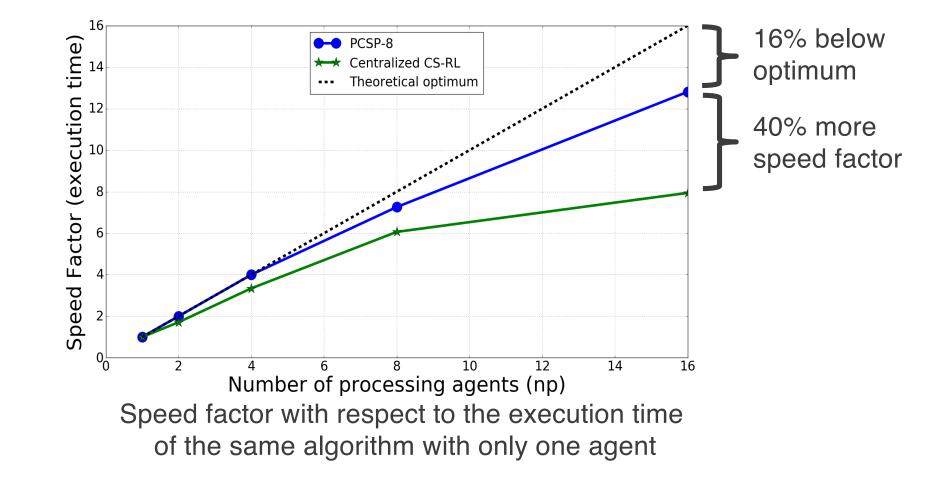
The PQL algorithm via a communication scheme with local cache (PQL-C).

່ເຫາຍເ

PCSP REDUCE THE NUMBER OF EPISODES IN SAME RATE AS PQL WITH CENTRAL QT

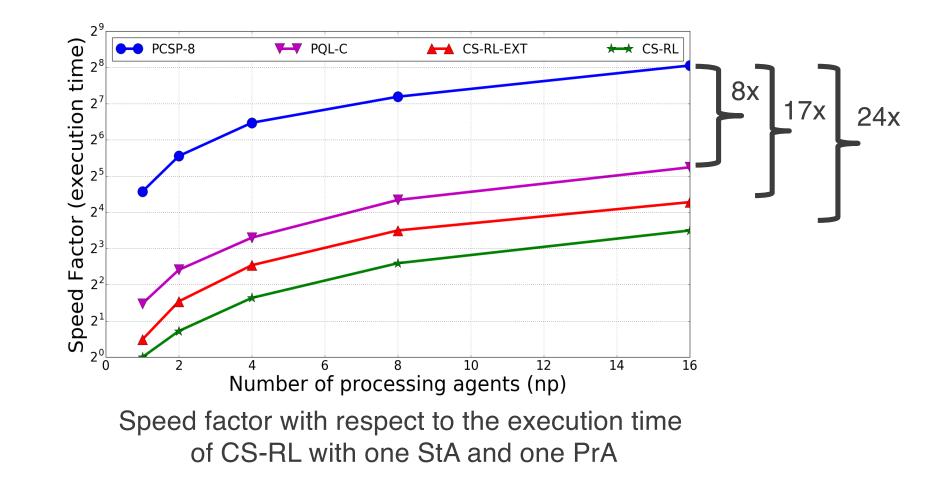


PCSP SCALES BETTER THAN CENTRALIZED PQL

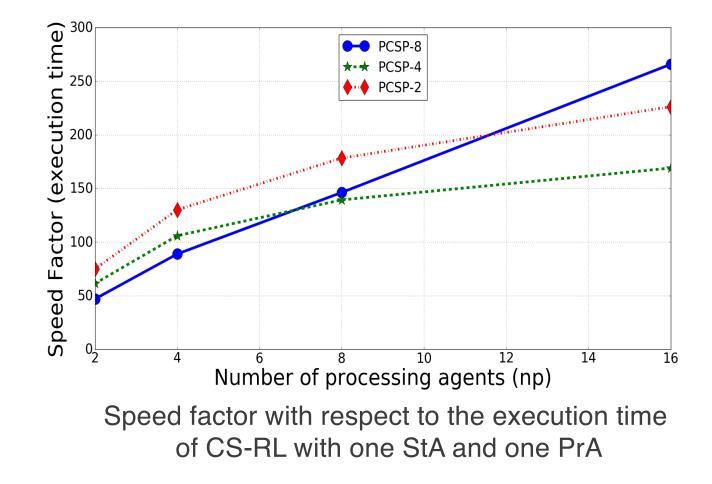


່ເຫາຍເ

PCSP OVERCOMES ALL THE EVALUATED ALGORITHMS IN TERMS OF EXECUTION TIME



INCREASING BOTH n_p AND n_s SIMULTANEARLY ALLOWS A BETTER PERFORMANCE OF PCSP



່ເກາຍເ

PARALLEL Q-LEARNING FOR CONSTRAINED COMPUTING ENVIRONMENTS

Q-Learning (QL): Strengths and weaknesses

 Traditional Parallel QL: the need of a new model for PQL

PQL with co-allocation of processing and data

Performance evaluation

CONCLUSIONS

່ເຫາຍເ

SUMMARY

Based on a flexible MA framework for developing efficient C-MAQL and PQL algorithms

PSCP minimizes the communication cost by combining a table partition strategy with a coallocation of both processing and storage

PCSP can be deployed in both high performance (e.g. cloud data centers) and resource constrained devices (edge or fog computing devices)

່ເກາຍເ

FUTURE WORK: IMPROVE TABLE PARTITION AND ALLOCATION OF AGENTS

Design and implement partition algorithms that do not require any previous domain knowledge

Define new schemes for co-allocating agents different to pure load balancing of StA such as processing load, communication cost, etc.

Implement and evaluate the performance of other table-based RL algorithms.

UNDEC embracing a better life

umec