‘mec

PARALLEL Q-LEARNING FOR IOT
ENVIROMENTS

MIGUEL CAMELO, JEROEN FAMAEY AND STEVEN LATRE

PPPPPP



MANY IOT APPLICATIONS REQUIRE ADAPTIVE AND
SMART CONTROL....

. \ WNOW Yo,
N Facial and Gesture Recognition
Cars will recognize your face and gestures
for keyless entry and adapt to your

personalized settings.

|
Ho R H

mam

ot

Extra Driver Safety
Driver cams can track and
alert you when you become
distracted and drowsy.

Blind Spot Assistance
Cars can see what you don’t see
to help prevent accidents.

loT-Enabled Driving
Cars can identify signs, markers and
signals, and automatically respond.

%6@
s <)
Your sig®*

“mmec



MANY IOT APPLICATIONS REQUIRE ADAPTIVE AND
SMART CONTROL.... WITH LOW LATENCY

\ WNOW Yo,

Facial and Gesture Recognition
Cars will recognize your face and gestures
for keyless entry and adapt to your
personalized settings.

Extra Driver Safety

Driver cams can track and
alert you when you become
distracted and drowsy.

Blind Spot Assistance
Cars can see what you don’t see
to help prevent accidents.

loT-Enabled Driving

Cars can identify signs, markers and

signals, and automatically respond.
61‘9(,

s A
Your sig™*

“mmec



RLAS AMEANS TO CONTROL IOT DEVICES

sensor
. (e.g. monitoring a river} smart building
/,.ﬁ-" "»\I (e.g. energy management )
RL agent Uil T ;
“.\._ / 7__/ _ . R ey p— s | 1t =
"/E %r‘-a\| smart house <. | iy iy
State Reward Action| | e MM mamagement) manspenent 222
\ | (e.g. health care ) -__;-.\}_“:‘\ (eg. security} Th
— 2o == — N
. | N
Environment iy - i I
> 1 TR
Sensors Actuator Q = =) g - |
@ =l L e 0
Edge Computing I — D ‘ assié?égriéc';v\::gzm)

Platform
AR

(eg.. augmented reality }

“mmec



PARALLEL Q-LEARNING FOR CONSTRAINED
COMPUTING ENVIRONMENTS

Q-Learning (QL): Strengths and weaknesses

Traditional Parallel QL: the need of a new model
for PQL

PQL with co-allocation of processing and data

Performance evaluation

“umec



PARALLEL Q-LEARNING FOR CONSTRAINED
COMPUTING ENVIRONMENTS

Q-Learning (QL): Strengths and weaknesses

Traditional Parallel QL: the need of a new model
for PQL

PQL with co-allocation of processing and data

Performance evaluation

“umec



Q-LEARNING (QL) IS A SIMPLE
AND EFFICIENT RL ALGORITHM

Initialize Q(s, a) arbitrarily
1. Repeia’g (f_or each episode):
Model free RL -> No 2. Initialize s - |
pr eVi ouS Inf orm atl on Of th e 3 Repeat (for each |terat|or.1 |nS|d§ of thg episode):
. . 4, Choose a from s using policy derived from Q (e.g. e-greedy)
enwronment IS needed . 5. Take action a, observer, s’
6 Q(s,a) —Q(s,a)+a[r+ Y maxa Q(s’, @) - Q(s, a) ]
7 S« ¢
Guarantee of convergence |8  Untisistermina l
iIf tabular representation of S/A | a - 3 . a
Q'Values S1 Q(s;, a1) Q(sy, a 2) Q(s3, a3) Q(ss, an)
S2 Q(s,, a1) Q(sy, a2) Q(sy, as) Q(s, an)
S3 Q(s3, a1) Q(s3, a,) Q(s3, as) Q(s3, an)
Sm | Qlsm @) | Qlsmas) | Qlsma) | .. | Qlsm, an)

“mmec



MOST OF RLALGORITHMS (INCLUDING QL)
HAVE THREE MAIN LIMITATIONS

Sequential and designed for centralized
environments.

Requires long training time to learn optimal policy.

Table-based algorithms have scalability issues in
large scale problems.

“mmec



PARALLEL QL AND COLLABORATIVE MA-QL
REDUCE THE TRAINING TIME

Collaborative Multi-agent (MA) QL

« A unique environment is altered by actions of agents.
» Agents need to coordinate actions.

Parallel QL

 All agents learn same task
« Episodes can be reduced in a factor of 1/n
* There is guarantee of convergence

“mmec



PARALLEL QL AND COLLABORATIVE MA-QL
REDUCE THE TRAINING TIME

Collaborative Multi-agent (MA) QL

« A unique environment is altered by actions of agents.
» Agents need to coordinate actions.

Parallel QL

 All agents learn same task
« Episodes can be reduced in a factor of 1/n
* There is guarantee of convergence

Both approaches allow decentralized implementation

“mmec



PARALLEL QL AND COLLABORATIVE MA-QL
REDUCE THE TRAINING TIME

Collaborative Multi-agent (MA) QL

« A unique environment is altered by actions of agents.
» Agents need to coordinate actions.

Parallel QL
 All agents learn same task
» Episodes can be reduced in a factor of 1/n
* There is guarantee of convergence

Both approaches allow decentralized implementation

“mmec



FUNCTION APPROXIMATORS (E.G. NEURONAL NETWORKS)
DO NOT GUARANTEE CONVERGENCE

Neuronal Networks:
« Provide a compact representation of the Q-Table
 Allow solving problems with large number of states.

Neuronal Networks do not:

« Guarantee convergence.
* Provide simple and intuitive implementation.
 Slower to find optimal policy than table-based approach.

“mmec



FUNCTION APPROXIMATORS (E.G. NEURONAL NETWORKS)
DO NOT GUARANTEE CONVERGENCE

Neuronal Networks:
« Provide a compact representation of the Q-Table
 Allow solving problems with large number of states.

Neuronal Networks do not:

« Guarantee convergence.

* Provide simple and intuitive implementation.
 Slower to find optimal policy than table-based approach.

| We need to go back to table-based approaches
mmec



PARALLEL Q-LEARNING FOR CONSTRAINED
COMPUTING ENVIRONMENTS

Q-Learning (QL): Strengths and weaknesses

Traditional Parallel QL: the need of a new
model for PQL

PQL with co-allocation of processing and data

Performance evaluation

“umec



TRADITIONAL PQL: CENTRAL QT BOTTLENECK
WITH HIGH-COST COMMUNICATION SCHEME

70

Y=k Execution Time
@-® Number of Episodes

(2]
o

Ul
o

RL Agent RL Agent
é
ez
Shared Q-table

Constant Share RL algorithm
with centralized table 10}

S
[e)

w
[e=)

Speed Factor

N
o

0 10 20 30 10 50 60
Number of Agents
“mmec



A MA-RL MODEL BASED ON FUNCTIONS
PROVIDES THE FLEXIBILITY THAT WE NEED

Many MA-RL algorithms (including PQL) execute
several (underlying) tasks while they are running

Allocation of resources.

Creation and deployment of RL agents.
Synchronization among agents.

Data collection.

Execution of RL algorithm.
Management of QT.

“umec



A MA-RL MODEL BASED ON FUNCTIONS
PROVIDES THE FLEXIBILITY THAT WE NEED

Many MA-RL algorithms (including PQL) execute
several (underlying) tasks while they are running

Function

* Allocation of resources.

Management * Creation aimd.deployment of RL agents.
® Synchronization among agents.

Data collection.

Processing Execution of BRL algorithm.

Storage " Management of QT.

“umec



EACH FUNCTION IS ASSIGNED TO A SPECIFIC KIND OF AGENT

Processing Processing
Agent B Agent ,
Processing agent (PrA)
» This is a QL agent that works on a
(possible external) QT. %
Storage S;‘oragte ) 4
= AE*CLer’]t_ H ,:Qﬂ 2z Management
Storage Agent (StA) % g; === Y

* |t stores (part of) the QT. =

* It serves requests from PrA. Constant Share RL algorithm modeled as a function
of management, storage and processing agent

“mmec



EACH FUNCTION IS ASSIGNED TO A SPECIFIC KIND OF AGENT

P“i\fge:ﬁt'”g Pr%;eiﬁi”g
Management agent (MngtA)
» Deploy StAs on available storage
resources. %

 Build and distributed QT among Storage Storage .- 4
StAs. :ﬂpf%nt_ :ﬂ%@ Management
- ~- Agent
» Deploy PrA on available processing 9. 9.

resources.

Constant Share RL algorithm modeled as a function
of management, storage and processing agent

“mmec



THE NEW MULTI-AGENT MODEL ALLOWS A
COMPLETE DECENTRALIZED EXECUTION

Applicable to many MA-RL @

algorithm g 4

QT is not a bottleneck anymore ) i}%ggt*

Q,O
It can guarantee convergence -

—l

Processing
Agent

ng

Storage
Agent

[
e We

o'

Management
Agent

3=

Constant Share RL algorithm modeled as a function
of management, storage and processing agent

“mmec



PARALLEL Q-LEARNING FOR CONSTRAINED
COMPUTING ENVIRONMENTS

Q-Learning (QL): Strengths and weaknesses

Traditional Parallel QL: the need of a new model
for PQL

PQL with co-allocation of processing and data

Performance evaluation

“umec



EXAMPLE: THE CLIFF PROBLEM

* @Goal: The agent navigates a grid from start to goal without
falling into the cliff.

Reward function: Policy @
-100 if robot falls into the cliff
-1 for each movement of the robot

+100 if robot reaches the goal
Optimal policy T

-1 -1 -1 -1 -1 -1 -1 -1
State Reward Action | . l \
- The CIiff (-100 gg

S T R R -

-1 A4 1 1

-1 1

'S \
“1mec W



PCSP : PQL WITH CO-ALLOCATION OF
STORAGE AND PROCESSING

Algorithm 2 PQL with Co-allocation of Storage and Pro-
cessing (PCSP)

Require: Number of states |S| and actions |A|,
Require: Set of physical nodes M
1: if [M| > O then

Two main procedures: 2 Deploy a MngtA |
3: g <— total available memory across physical nodes.
4: if O(|S||A|) < g then
5: Compute table partitions P
. : 6: Deploy n. = |P| StA
Creatlon and 7 Initialize the QT
8: Create and deploy n, PrA _
deployment Of agents 0: while p has not converged, Vp € PrA do
" QL execution o endwhie S
12 Obtain statics from p, Vp € PTrA
13: Retrieve the optimal policy 7 from QT
14: end if
15: end if

“1mec 16: return T




STORE CONSECUTIVES STATES IN THE SAME
STA REDUCES THE COMMUNICATION COST

Two states s and s’ are consecutives if S’ is
the next state of s’ after execution some

action.

Operations such as max_ Q(s’, a’) are

completely local.

....
Beass
Beess
Sfessass
S

o395

%3
5%

et
Sorssatatetes
I
SRR

5
5

s
RS
588588
frrosesssesss

S
s
SIS

0
o

s
S
88

3% S
s sss]
S

%
R

0000
.axxv.
s
RIIIEK
OO S99,

S B SRS
e

o
B
029558

%

Optimal Route

States of a (possible optimal) solution are

managed by a few (maybe unique) StAs.

tmec



THE NUMBER OF STATES STORED PER NODE IS
WELL-BALANCED ACROSS THE RESOURCES

“umec

ne (number of StAs) = P (number of partitions)

P = H ¢ is the total processing resources.

. S[|A
In homogeneous environments StA stores slidl

ng
In heterogeneous environments each StA i stores
Si bits
ns

> si=008114D,0 < 5; < IS]14

i=1



EXPLOIT THE STORAGE OF CONSECUTIVES
STATES BY DEPLOYING PRA NEXT TO STA

Deploy PrAs on nodes where StA have been
already deployed

n, (number of PrAs) = ng (number of StAs)

Minimum communication cost if PrA is exploring
states managed by the co-allocated StA

In case of requiring states from remote StAs, a
temporal PrAis deployed

“umec



DEPLOYING TEMPORAL PRA MINIMIZES NUMBER OF
REQUESTS FROM ORIGINAL PRA TO REMOTE STAS.

Algorithm 3 Modified Q-Learning

Require: Access to Distributed Q-Table with |S||A| values

1: repeat(for each episode)
e ] 2 Initialize s
| % jﬁ | | 3: repeat(for each iteration)
E i T 4: Use behavior policy to choose a
& & 5: Take action a, observe r, s’
i i 6: if s’ is not stored in any local StA then
7: Deploy temp PrA on node where s’ is stored.
2. Temp Prais OS] . Wait
Deployed | 3 Temp PrAis 10: until temp PrA has finished
Destroyed ’
11: 8§48
: , 12: else
1* :;ﬁci;:::nues 13: TDerror = max,: Q(s’,a’) — Q(s,a)
14: Q(s,a) + Q(s,a) + a- (r+~-TDerror)
1. PrAStarts 15: g+ g
execution 16: end if
17: until s is goal state
4. PrA1 moves to next local state 18: until max episodes = true or convergence = true

“mmec



PARALLEL Q-LEARNING FOR CONSTRAINED
COMPUTING ENVIRONMENTS

Q-Learning (QL): Strengths and weaknesses

Traditional Parallel QL: the need of a new model
for PQL

PQL with co-allocation of processing and data

Performance evaluation

“umec



WE EVALUATED PCSP AGAINST SEVERAL QL ALGORITHMS
UNDER TWO METRICS (EPISODES AND EXECUTION TIME)

“mmec

The single-agent Q-learning algorithm (SQL)

A naive |m|pler_nentation of the Constant Share RL
(CS-RL) algorithm

An extended version of the CS-RL with local cache
on the processing agents (CS-RL-EXT)

The PQL algorithm via a communication scheme
with local cache (PQL-C).



PCSP REDUCE THE NUMBER OF EPISODES IN
SAME RATE AS PQL WITH CENTRAL QT

=
[*)}

@@ PCSP-8
V¥ PQL-C
A4 CS-RL-EXT
*—k CS-RL

|—l
'S

=
N

=
o

[e))

Speed Factor (episodes)

N

OO

2 4 6 8 10 12 14 16
Number of processing agents (np)
Speed factor with respect to number

“nmnec of episodes of a SAQ execution



PCSP SCALES BETTER THAN CENTRALIZED PQL

16

oo rCshs | e I 16% below
14! *—k Centralized CS-RL | e ] :
.= Theoretical optimum | % Optlmum
12}
40% more

10t

speed factor

Speed Factor (execution time)

0 2 4 6 8 10 12 14 16
Number of processing agents (np)
Speed factor with respect to the execution time

"umec of the same algorithm with only one agent



PCSP OVERCOMES ALL THE EVALUATED
ALGORITHMS IN TERMS OF EXECUTION TIME

“mmec

N
©

‘.—. PCSP-8 V¥ PQL-C A=A CS-RL-EXT Fe=sit CS-RL‘

N
©

N
~

Speed Factor (execution time)

0 2 4 6 8 10 12 14 16
Number of processing agents (np)

Speed factor with respect to the execution time
of CS-RL with one StA and one PrA



INCREASING BOTH n,, AND ng SIMULTANEARLY
ALLOWS A BETTER PERFORMANCE OF PCSP

w
o
o

@@ PCSP-8

*+% PCSP-4

N
(4
o

N
o
o

=
U
o

-]
o
o

U
o

Speed Factor (execution time)

é 8 10 1;2 14 16
Number of processing agents (np)
Speed factor with respect to the execution time
of CS-RL with one StA and one PrA

NC)
BE

“mmec



PARALLEL Q-LEARNING FOR CONSTRAINED
COMPUTING ENVIRONMENTS

v Q-Learning (QL): Strengths and weaknesses

v Traditional Parallel QL: the need of a new
model for PQL

v PQL with co-allocation of processing and data

v Performance evaluation

“umec



CONCLUSIONS



SUMMARY

“umec

Based on a flexible MA framework for developing
efficient C-MAQL and PQL algorithms

PSCP minimizes the communication cost by
combining a table partition strategy with a co-
allocation of both processing and storage

PCSP can be deployed in both high performance
(e.g. cloud data centers) and resource constrained
devices (edge or fog computing devices)



FUTURE WORK: IMPROVE TABLE PARTITION AND ALLOCATION OF

AGENTS

“umec

Design and implement partition algorithms that do
not require any previous domain knowledge

Define new schemes for co-allocating agents
different to pure load balancing of StA such as
processing load, communication cost, etc.

Implement and evaluate the performance of other
table-based RL algorithms.



Lihec

embracing a better life

umec




