
PUBLIC

PARALLEL Q-LEARNING FOR IOT
ENVIROMENTS

MIGUEL CAMELO, JEROEN FAMAEY AND STEVEN LATRÉ

MANY IOT APPLICATIONS REQUIRE ADAPTIVE AND
SMART CONTROL….

MANY IOT APPLICATIONS REQUIRE ADAPTIVE AND
SMART CONTROL…. WITH LOW LATENCY

RL AS A MEANS TO CONTROL IOT DEVICES

RL agent

State ActionReward

Environment
Actuator

s
Sensors

PARALLEL Q-LEARNING FOR CONSTRAINED
COMPUTING ENVIRONMENTS

Q-Learning (QL): Strengths and weaknesses

Traditional Parallel QL: the need of a new model
for PQL

PQL with co-allocation of processing and data

Performance evaluation

PARALLEL Q-LEARNING FOR CONSTRAINED
COMPUTING ENVIRONMENTS

Q-Learning (QL): Strengths and weaknesses

Traditional Parallel QL: the need of a new model
for PQL

PQL with co-allocation of processing and data

Performance evaluation

Q-LEARNING (QL) IS A SIMPLE
AND EFFICIENT RL ALGORITHM

Initialize Q(s, a) arbitrarily
1. Repeat (for each episode):
2. Initialize s
3. Repeat (for each iteration inside of the episode):
4. Choose a from s using policy derived from Q (e.g. ε-greedy)
5. Take action a, observe r, s’
6. Q(s, a) ! Q(s, a) + α [r + γ maxa’ Q(s’, a’) - Q(s, a)]
7. s ! s’
8. Until s is terminal

S/A a1 a2 a3 … an
s1 Q(s1,	a1) Q(s2,	a_2) Q(s3,	a3) … Q(s1,	an)

s2 Q(s2,	a1) Q(s2,	a2) Q(s2,	a3) … Q(s2,	an)
s3 Q(s3,	a1) Q(s3,	a2) Q(s3,	a3) … Q(s3,	an)
…. … … … … …
sm Q(sm,	a3) Q(sm,	a3) Q(sm,	a3) … Q(sm,	an)

Model free RL -> No
previous information of the
environment is needed.

Guarantee of convergence
if tabular representation of
Q-values.

MOST OF RL ALGORITHMS (INCLUDING QL)
HAVE THREE MAIN LIMITATIONS

Sequential and designed for centralized
environments.

Requires long training time to learn optimal policy.

Table-based algorithms have scalability issues in
large scale problems.

PARALLEL QL AND COLLABORATIVE MA-QL
REDUCE THE TRAINING TIME

Collaborative Multi-agent (MA) QL
• A unique environment is altered by actions of agents.
• Agents need to coordinate actions.

Parallel QL
• All agents learn same task
• Episodes can be reduced in a factor of 1/n
• There is guarantee of convergence

PARALLEL QL AND COLLABORATIVE MA-QL
REDUCE THE TRAINING TIME

Collaborative Multi-agent (MA) QL
• A unique environment is altered by actions of agents.
• Agents need to coordinate actions.

Parallel QL
• All agents learn same task
• Episodes can be reduced in a factor of 1/n
• There is guarantee of convergence

Both approaches allow decentralized implementation

PARALLEL QL AND COLLABORATIVE MA-QL
REDUCE THE TRAINING TIME

Collaborative Multi-agent (MA) QL
• A unique environment is altered by actions of agents.
• Agents need to coordinate actions.

Parallel QL
• All agents learn same task
• Episodes can be reduced in a factor of 1/n
• There is guarantee of convergence

Both approaches allow decentralized implementation

FUNCTION APPROXIMATORS (E.G. NEURONAL NETWORKS)
DO NOT GUARANTEE CONVERGENCE

Neuronal Networks:
• Provide a compact representation of the Q-Table
• Allow solving problems with large number of states.

Neuronal Networks do not:
• Guarantee convergence.
• Provide simple and intuitive implementation.
• Slower to find optimal policy than table-based approach.

FUNCTION APPROXIMATORS (E.G. NEURONAL NETWORKS)
DO NOT GUARANTEE CONVERGENCE

Neuronal Networks:
• Provide a compact representation of the Q-Table
• Allow solving problems with large number of states.

Neuronal Networks do not:
• Guarantee convergence.
• Provide simple and intuitive implementation.
• Slower to find optimal policy than table-based approach.

We need to go back to table-based approaches

PARALLEL Q-LEARNING FOR CONSTRAINED
COMPUTING ENVIRONMENTS

Q-Learning (QL): Strengths and weaknesses

Traditional Parallel QL: the need of a new
model for PQL

PQL with co-allocation of processing and data

Performance evaluation

TRADITIONAL PQL: CENTRAL QT BOTTLENECK
WITH HIGH-COST COMMUNICATION SCHEME

≈ 𝑛

≈ 𝑛/3

Constant Share RL algorithm
with centralized table

A MA-RL MODEL BASED ON FUNCTIONS
PROVIDES THE FLEXIBILITY THAT WE NEED

Many MA-RL algorithms (including PQL) execute
several (underlying) tasks while they are running

Allocation of resources.
Creation and deployment of RL agents.
Synchronization among agents.
Data collection.
Execution of RL algorithm.
Management of QT.

A MA-RL MODEL BASED ON FUNCTIONS
PROVIDES THE FLEXIBILITY THAT WE NEED

Many MA-RL algorithms (including PQL) execute
several (underlying) tasks while they are running

Allocation of resources.
Creation and deployment of RL agents.
Synchronization among agents.
Data collection.
Execution of RL algorithm.
Management of QT.Storage

Management

Processing

Function

EACH FUNCTION IS ASSIGNED TO A SPECIFIC KIND OF AGENT

Constant Share RL algorithm modeled as a function
of management, storage and processing agent

Processing agent (PrA)
• This is a QL agent that works on a

(possible external) QT.

Storage Agent (StA)
• It stores (part of) the QT.
• It serves requests from PrA.

EACH FUNCTION IS ASSIGNED TO A SPECIFIC KIND OF AGENT

Management agent (MngtA)
• Deploy StAs on available storage

resources.
• Build and distributed QT among

StAs.
• Deploy PrA on available processing

resources.
Constant Share RL algorithm modeled as a function

of management, storage and processing agent

THE NEW MULTI-AGENT MODEL ALLOWS A
COMPLETE DECENTRALIZED EXECUTION

Applicable to many MA-RL
algorithm

QT is not a bottleneck anymore

It can guarantee convergence
Constant Share RL algorithm modeled as a function

of management, storage and processing agent

PARALLEL Q-LEARNING FOR CONSTRAINED
COMPUTING ENVIRONMENTS

Q-Learning (QL): Strengths and weaknesses

Traditional Parallel QL: the need of a new model
for PQL

PQL with co-allocation of processing and data

Performance evaluation

EXAMPLE: THE CLIFF PROBLEM

Goal: The agent navigates a grid from start to goal without
falling into the cliff.

Reward function:
-100 if robot falls into the cliff
-1 for each movement of the robot
+100 if robot reaches the goal

RL	agent

Environment

State ActionReward

PCSP : PQL WITH CO-ALLOCATION OF
STORAGE AND PROCESSING

Two main procedures:

Creation and
deployment of agents
QL execution

STORE CONSECUTIVES STATES IN THE SAME
STA REDUCES THE COMMUNICATION COST

Two states s and s’ are consecutives if s’ is
the next state of s’ after execution some
action.

Operations such as maxa’ Q(s’, a’) are
completely local.

States of a (possible optimal) solution are
managed by a few (maybe unique) StAs.

THE NUMBER OF STATES STORED PER NODE IS
WELL-BALANCED ACROSS THE RESOURCES

𝑛% (number of StAs) = 𝑃 (number of partitions)

𝑃 = (
) , 𝑐 is the total processing resources.

In homogeneous environments StA stores + ,
-.

In heterogeneous environments each StA 𝑖 stores
𝑠1 bits

2𝑠1

-3

145

= Ω 𝑆 𝐴 , 0 ≤ 𝑠1 ≤ 𝑆 𝐴

EXPLOIT THE STORAGE OF CONSECUTIVES
STATES BY DEPLOYING PRA NEXT TO STA

Deploy PrAs on nodes where StA have been
already deployed

𝑛< (number of PrAs) =	𝑛% (number of StAs)

Minimum communication cost if PrA is exploring
states managed by the co-allocated StA

In case of requiring states from remote StAs, a
temporal PrA is deployed

DEPLOYING TEMPORAL PRA MINIMIZES NUMBER OF
REQUESTS FROM ORIGINAL PRA TO REMOTE STAS.

PARALLEL Q-LEARNING FOR CONSTRAINED
COMPUTING ENVIRONMENTS

Q-Learning (QL): Strengths and weaknesses

Traditional Parallel QL: the need of a new model
for PQL

PQL with co-allocation of processing and data

Performance evaluation

The single-agent Q-learning algorithm (SQL)

A naive implementation of the Constant Share RL
(CS-RL) algorithm

An extended version of the CS-RL with local cache
on the processing agents (CS-RL-EXT)

The PQL algorithm via a communication scheme
with local cache (PQL-C).

WE EVALUATED PCSP AGAINST SEVERAL QL ALGORITHMS
UNDER TWO METRICS (EPISODES AND EXECUTION TIME)

PCSP REDUCE THE NUMBER OF EPISODES IN
SAME RATE AS PQL WITH CENTRAL QT

Speed factor with respect to number
of episodes of a SAQ execution

PCSP SCALES BETTER THAN CENTRALIZED PQL

Speed factor with respect to the execution time
of the same algorithm with only one agent

40% more
speed factor

16% below
optimum

PCSP OVERCOMES ALL THE EVALUATED
ALGORITHMS IN TERMS OF EXECUTION TIME

Speed factor with respect to the execution time
of CS-RL with one StA and one PrA

8x
17x 24x

INCREASING BOTH 𝑛< AND 𝑛% SIMULTANEARLY
ALLOWS A BETTER PERFORMANCE OF PCSP

Speed factor with respect to the execution time
of CS-RL with one StA and one PrA

PARALLEL Q-LEARNING FOR CONSTRAINED
COMPUTING ENVIRONMENTS

ü Q-Learning (QL): Strengths and weaknesses

ü Traditional Parallel QL: the need of a new
model for PQL

ü PQL with co-allocation of processing and data

ü Performance evaluation

CONCLUSIONS

SUMMARY

Based on a flexible MA framework for developing
efficient C-MAQL and PQL algorithms

PSCP minimizes the communication cost by
combining a table partition strategy with a co-
allocation of both processing and storage

PCSP can be deployed in both high performance
(e.g. cloud data centers) and resource constrained
devices (edge or fog computing devices)

FUTURE WORK: IMPROVE TABLE PARTITION AND ALLOCATION OF
AGENTS

Design and implement partition algorithms that do
not require any previous domain knowledge

Define new schemes for co-allocating agents
different to pure load balancing of StA such as
processing load, communication cost, etc.

Implement and evaluate the performance of other
table-based RL algorithms.

PUBLIC

