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RL AS A MEANS TO CONTROL IOT DEVICES
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Q-LEARNING (QL) IS A SIMPLE 
AND EFFICIENT RL ALGORITHM

Initialize Q(s, a) arbitrarily
1. Repeat (for each episode):
2.       Initialize s
3.        Repeat (for each iteration inside of the episode):
4.                Choose a from s using policy derived from Q (e.g. ε-greedy)
5.                Take action a, observe r, s’
6.                Q(s, a) ! Q(s, a) + α [ r + γ maxa’ Q(s’, a’) - Q(s, a) ]
7.                s ! s’
8.         Until s is terminal

S/A a1 a2 a3 … an
s1 Q(s1,	a1) Q(s2,	a_2) Q(s3,	a3) … Q(s1,	an)

s2 Q(s2,	a1) Q(s2,	a2) Q(s2,	a3) … Q(s2,	an)
s3 Q(s3,	a1) Q(s3,	a2) Q(s3,	a3) … Q(s3,	an)
…. … … … … …
sm Q(sm,	a3) Q(sm,	a3) Q(sm,	a3) … Q(sm,	an)

Model free RL -> No 
previous information of the 
environment is needed.

Guarantee of convergence 
if tabular representation of 
Q-values.



MOST OF RL ALGORITHMS (INCLUDING QL)
HAVE THREE MAIN LIMITATIONS

Sequential and designed for centralized 
environments.

Requires long training time to learn optimal policy. 

Table-based algorithms have scalability issues in 
large scale problems.



PARALLEL QL AND COLLABORATIVE MA-QL 
REDUCE THE TRAINING TIME

Collaborative Multi-agent (MA) QL
• A unique environment is altered by actions of agents.
• Agents need to coordinate actions.

Parallel QL
• All agents learn same task
• Episodes can be reduced in a factor of 1/n 
• There is guarantee of convergence



PARALLEL QL AND COLLABORATIVE MA-QL 
REDUCE THE TRAINING TIME

Collaborative Multi-agent (MA) QL
• A unique environment is altered by actions of agents.
• Agents need to coordinate actions.

Parallel QL
• All agents learn same task
• Episodes can be reduced in a factor of 1/n 
• There is guarantee of convergence

Both approaches allow decentralized implementation



PARALLEL QL AND COLLABORATIVE MA-QL 
REDUCE THE TRAINING TIME

Collaborative Multi-agent (MA) QL
• A unique environment is altered by actions of agents.
• Agents need to coordinate actions.

Parallel QL
• All agents learn same task
• Episodes can be reduced in a factor of 1/n 
• There is guarantee of convergence

Both approaches allow decentralized implementation



FUNCTION APPROXIMATORS (E.G. NEURONAL NETWORKS) 
DO NOT GUARANTEE CONVERGENCE 

Neuronal Networks:
• Provide a compact representation of the Q-Table
• Allow solving problems with large number of states.

Neuronal Networks do not:
• Guarantee convergence.
• Provide simple and intuitive implementation.
• Slower to find optimal policy than table-based approach.
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• Provide a compact representation of the Q-Table
• Allow solving problems with large number of states.

Neuronal Networks do not:
• Guarantee convergence.
• Provide simple and intuitive implementation.
• Slower to find optimal policy than table-based approach.

We need to go back to table-based approaches
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TRADITIONAL PQL: CENTRAL QT BOTTLENECK 
WITH HIGH-COST COMMUNICATION SCHEME

≈ 𝑛

≈ 𝑛/3

Constant Share RL algorithm
with centralized table



A MA-RL MODEL BASED ON FUNCTIONS 
PROVIDES THE FLEXIBILITY THAT WE NEED

Many MA-RL algorithms (including PQL) execute 
several (underlying) tasks while they are running

Allocation of resources.
Creation and deployment of RL agents.
Synchronization among agents.
Data collection.
Execution of RL algorithm.
Management of QT.
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Many MA-RL algorithms (including PQL) execute 
several (underlying) tasks while they are running

Allocation of resources.
Creation and deployment of RL agents.
Synchronization among agents.
Data collection.
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EACH FUNCTION IS ASSIGNED TO A SPECIFIC KIND OF AGENT

Constant Share RL algorithm modeled as a function 
of management, storage and processing agent

Processing agent (PrA)
• This is a QL agent that works on a 

(possible external) QT.

Storage Agent (StA)
• It stores (part of) the QT.
• It serves requests from PrA.



EACH FUNCTION IS ASSIGNED TO A SPECIFIC KIND OF AGENT

Management agent (MngtA)
• Deploy StAs on available storage 

resources.
• Build and distributed QT among 

StAs.
• Deploy PrA on available processing 

resources.
Constant Share RL algorithm modeled as a function 

of management, storage and processing agent



THE NEW MULTI-AGENT MODEL ALLOWS A 
COMPLETE DECENTRALIZED EXECUTION

Applicable to many MA-RL 
algorithm

QT is not a bottleneck anymore

It can guarantee convergence
Constant Share RL algorithm modeled as a function 

of management, storage and processing agent
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EXAMPLE: THE CLIFF PROBLEM

Goal: The agent navigates a grid from start to goal without 
falling into the cliff.

Reward function:
-100 if robot falls into the cliff
-1 for each movement of the robot
+100 if robot reaches the goal

RL	agent

Environment

State ActionReward



PCSP : PQL WITH CO-ALLOCATION OF 
STORAGE AND PROCESSING

Two main procedures:

Creation and 
deployment of agents
QL execution 



STORE CONSECUTIVES STATES IN THE SAME 
STA REDUCES THE COMMUNICATION COST

Two states s and s’ are consecutives if s’ is 
the next state of s’ after execution some 
action.

Operations such as maxa’ Q(s’, a’) are 
completely local.

States of a (possible optimal) solution are 
managed by a few (maybe unique) StAs.



THE NUMBER OF STATES STORED PER NODE IS 
WELL-BALANCED ACROSS THE RESOURCES

𝑛% (number of StAs) = 𝑃 (number of partitions)

𝑃 = (
) , 𝑐 is the total processing resources.

In homogeneous environments StA stores + ,
-.

In heterogeneous environments each StA 𝑖 stores 
𝑠1 bits

2𝑠1

-3

145

= Ω 𝑆 𝐴 , 0 ≤ 𝑠1 ≤ 𝑆 𝐴



EXPLOIT THE STORAGE OF CONSECUTIVES 
STATES BY DEPLOYING PRA NEXT TO STA

Deploy PrAs on nodes where StA have been 
already deployed

𝑛< (number of PrAs) =	𝑛% (number of StAs)

Minimum communication cost if PrA is exploring 
states managed by the co-allocated StA

In case of requiring states from remote StAs, a 
temporal PrA is deployed



DEPLOYING TEMPORAL PRA MINIMIZES NUMBER OF
REQUESTS FROM ORIGINAL PRA TO REMOTE STAS.
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The single-agent Q-learning algorithm (SQL)

A naive implementation of the Constant Share RL 
(CS-RL) algorithm

An extended version of the CS-RL with local cache 
on the processing agents (CS-RL-EXT)

The PQL algorithm via a communication scheme 
with local cache (PQL-C).

WE EVALUATED PCSP AGAINST SEVERAL QL ALGORITHMS 
UNDER TWO METRICS (EPISODES AND EXECUTION TIME)



PCSP REDUCE THE NUMBER OF EPISODES IN
SAME RATE AS PQL WITH CENTRAL QT 

Speed factor with respect to number 
of episodes of a SAQ execution  



PCSP SCALES BETTER THAN CENTRALIZED PQL

Speed factor with respect to the execution time 
of the same algorithm with only one agent

40% more 
speed factor 

16% below 
optimum



PCSP OVERCOMES ALL THE EVALUATED 
ALGORITHMS IN TERMS OF EXECUTION TIME

Speed factor with respect to the execution time 
of CS-RL with one StA and one PrA

8x
17x 24x



INCREASING BOTH 𝑛< AND 𝑛% SIMULTANEARLY
ALLOWS A BETTER PERFORMANCE OF PCSP

Speed factor with respect to the execution time 
of CS-RL with one StA and one PrA
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CONCLUSIONS



SUMMARY

Based on a flexible MA framework for developing 
efficient C-MAQL and PQL algorithms

PSCP minimizes the communication cost by 
combining a table partition strategy with a co-
allocation of both processing and storage

PCSP can be deployed in both high performance 
(e.g. cloud data centers) and resource constrained 
devices (edge or fog computing devices)



FUTURE WORK: IMPROVE TABLE PARTITION AND ALLOCATION OF 
AGENTS

Design and implement partition algorithms that do 
not require any previous domain knowledge 

Define new schemes for co-allocating agents 
different to pure load balancing of StA such as 
processing load, communication cost, etc.  

Implement and evaluate the performance of other 
table-based RL algorithms.
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