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Neuromorphic Computing

• Neuromorphic computing systems are 
software/hardware systems that are inspired by 
biological brains.

• Neural networks in hardware. 

• Goal is to capture important capabilities of the 
biological brain: real-time processing abilities, 
generalization of learned information, adaptability to 
changes in the environment, robustness.

• Neuromorphic hardware: improvements in power, 
size/portability, computation time, communication 
costs over neuromorphic simulations.
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Neuromorphic Computing

• What characterizes a neuromorphic computer?

– Many simple processor/memory structures (e.g., neurons and 
synapses).

– Communication using simple messages (e.g., spikes).

– Algorithms usually emphasize temporal interaction.

• Messages have a time-stamp (implicit or explicit).

• Operation is usually event-driven.
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Dynamic Adaptive Neural Network Array 
(DANNA)

• Array of programmable 
neuromorphic elements.

• Elements can connect to up 
to 16 neighbors.

• Current: FPGA.

• Future: VLSI, memristors.



How do we program 
neuromorphic 
computers?
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Example Training/Design: 
Evolutionary Optimization



7 Parallel Evolutionary Optimization for Neuromorphic Network Training

Spiking 
Neuromorphic 

Device

Example Training/Design: 
Evolutionary Optimization

Application
Simulation 

Engine



8 Parallel Evolutionary Optimization for Neuromorphic Network Training

Spiking 
Neuromorphic 

Device

Example Training/Design: 
Evolutionary Optimization

Application
Simulation 

Engine

1.5



9 Parallel Evolutionary Optimization for Neuromorphic Network Training

Spiking 
Neuromorphic 

Device

Example Training/Design: 
Evolutionary Optimization

Application
Simulation 

Engine

1.5

4



10 Parallel Evolutionary Optimization for Neuromorphic Network Training

Spiking 
Neuromorphic 

Device

Example Training/Design: 
Evolutionary Optimization

Application
Simulation 

Engine

1.5

4

2



11 Parallel Evolutionary Optimization for Neuromorphic Network Training

Spiking 
Neuromorphic 

Device

Example Training/Design: 
Evolutionary Optimization

Application
Simulation 

Engine

1.5

4

2.5

1



12 Parallel Evolutionary Optimization for Neuromorphic Network Training

Example Training/Design: 
Evolutionary Optimization

1.5

4

2.5

1



13 Parallel Evolutionary Optimization for Neuromorphic Network Training

Example Training/Design: 
Evolutionary Optimization

1.5

4

2.5

1

Next Generation



14 Parallel Evolutionary Optimization for Neuromorphic Network Training

Single Node, Single Thread (SNST EO)
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Improving EO Performance

• Fitness evaluation is a bottleneck:

– Optimize neuromorphic simulator.

– Parallelize fitness evaluation.

• Solution space for network solutions is large for complex 
problems:

– Larger population sizes can allow for better exploration of the search 
space, leading to solutions more quickly. 

– Subpopulations with communication allow for diversity, but also 
knowledge sharing. 
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Simulator Performance
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Single-Node Multi-Thread (SNMT EO)
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Super Master – Master-Slave



26 Parallel Evolutionary Optimization for Neuromorphic Network Training

Super-Master – SP2SP
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Titan

• 18,688 compute nodes – 16 core AMD processors on 
each node (along with an NVIDIA Kepler GPU).

• 3rd on the Top 500 Supercomputers List in June 2016.
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Application: Pole Balancing
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Pole Balancing Results - Titan
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Application: One Dimensional Navigation
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Flappy Bird Results - Titan
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BOB – Raspberry Pi Cluster

• 64 Raspberry Pi 3 Cluster

– 1.15 GHz quad core ARM Cortex A53 CPU

• Each set of 32 nodes is on a Gigabit 
Ethernet switch.

– 32-node sets are connected by a single 
gigabit link.
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Network Structure Analysis

• EO has the by-product of producing lots of networks and 
their performance characteristics.

• We took 90,000 pole-balancing networks generated on Titan 
and analyzed input/output paths:
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Future Work

• GPU simulator is in progress.

– Can be used in combination with event-based simulator to take 
advantage of all computing resources to study neuromorphic 
systems.

• Profiling and optimizing existing implementations.

• Additional exploration of produced networks and their 
performance characteristics to understand the learning 
process.

– What are the characteristics of “good” networks?

– Can we embed learned information into the training process?
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Preliminary GPU Implementation
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Conclusion

• Neuromorphic computing is clearly one architecture that will 
be present in the computing landscape of the future. 

• There are still many unknowns about neuromorphic 
computing system, including the most efficient ways to train 
them.

• Evolutionary optimization (EO) is one way to train 
neuromorphic networks that is especially amenable for large-
scale implementation.

• We implement, test, and demonstrate large-scale parallel 
EO methods on Titan and BOB.

• We demonstrate one way to utilize the produced results from 
large-scale EO implementations to study a neuromorphic 
architecture. 
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GPU Improvements

• Batching of DANNA I/O packets

– This reduces the number of kernel launches required

• Pinned memory for DANNA I/O packets

– Allows transfers to be concurrent with simulation

• Load array in shared memory

– Can’t really “block” simulation like a matrix multiply but current arrays 
are small enough to entirely fit in shared memory

– In combination with Batching, only have to hit global memory at the 
beginning and end of the batch

• Neuron and Synapse list

– To avoid divergence, divide the warps into Neuron warps and 
Synapse warps that run through their respective lists.


