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Motivation and Goals

 Scientific data Is
Increasingly large and
complex, making new
discovery difficult

« Can deep learning and
novel architectures provide
a way of aiding scientific
discovery?
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Deep Learning Performance

Top 5 Classification Accuracy %
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* What could you
do with

— HPC,
— Quantum
— Neuromorphic?
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Motivations for novel architectures

* Deep Learning network topologies are layered due
to computabllity

— Does a complex topology offer better results?

* Deep Learning Hyper-parameters are hard to tune

— Can a CNN be quickly tuned for a new scientific
datasets?

* Deep Learning Trained models are hard to deploy

— Can models be deployed on or near scientific
iInstruments?
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Hypothesis

Scientific Data
Scientific Instrument

ementation

Auto Tuned Hyper
Parameters
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Methods

Quantum HPC Neuromorphic

Scientific Data

Scientific Instrument

Hardware
Implementation

Complex
Topology

Auto Tuned Hyper
Parameters
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Rational

certain hard problems

* Hints at speed up of J

« Computational
parallelization

* Native neural networks,
very low power
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Experimental Goals

« Test feasibility of complex topologies (intra-layer )
connections)
» USC Lockheed Martin Quantum Computation
Center D-Wave
-/
h
 Test evolutionary algorithms to auto-tune hyper-
parameters
 ORNL’s Titan
-/
N

 Test the ability to represent neural network models
in low power hardware

« UTK Memristive Nida System

. 4
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How do we compare the architectures?

TS
I

 The MNIST database 0800000608000000
: o 200 W O - N VAR A A R R A
contains 60,000 training A229202z2222222d
Images and 10,000 testing 333323233333 3333
Images HH4M Y 4 Q¥YY Y S L4

_ _ SsFs s ySsss5SssSy

* Very small images size, 66666660606 66CGCEE
28x28 77231277 127177727

FFPES T ETFETEETR S

» http://yann.lecun.com/exdb/mnist/ q 99 799 4 s g § 999 9 9

_&(OAK RIDGE

National Laboratory


http://yann.lecun.com/exdb/mnist/

Common Ground

e Quantum
Physics

 Computer
Science

* Electrical
Engineering

* Neuroscience

Qubit
Node
Neuron

Entanglement
Link
Synapse

Chimera Network
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Limited Boltzmann Machine Network

10 Output Nodes 0000000000

(one for each digit) I

Fully-Connected (every node in visible
Is connected to every node in hidden).

784 “Visible” Nodes (28x28 pixels for image)

Fully-Connected (every node in output
IS connected to every node in hidden).

One
Layer
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Quantum Results - USC/ISI D-Wave

Complex topology learns and provides better results than no intra-layer connection
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Limited Boltzmann
Machine learning from
training examples

108

10.85

10.8

10.75

10.7

10.65

10.6

10.55

10.5

4 0.45

0.4

25

Classification Rate

Testing error

Restricted BM versus Limited BM

221

——No coupling
—oe— Random coupling

Limited Boltzmann
Machine more accurate
than restricted BM

%OAK RIDGE

National Laboratory



HPC Results - 500 nodes on Titan

Demonstrates an effective way of auto tuning a CNN

. N InnerProd1 -
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‘ Inner Product Layer (10 outputs) ‘

‘ Inner Product Layer (500, 590 hidden units) ‘

‘ Pool2 Layer (Max, K=2) ‘

‘ Conv2 Layer (50, 67 hidden units, K=5, 3) ‘

| Pool1 Layer (Max, K=2) |

‘ Conv1 Layer (20, 29 hidden units, K=5, 5) ‘ %OAK RIDGE
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Neuromorphic —- ORNL/UT NIDA network
on Memristor

20X more energy-efficient than their CMOS counterparts
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Conclusion

« Complex topologies with intra-layer
connects have better classification
performance than without connections

« HPC can be used to auto-tune CNN
topologies

« Neuromorphic hardware has the
potential to implement deep learning
network in very low-power hardware

* Afirst step towards richer DL on novel
architectures
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Next Step

- Evaluate the strengths and weaknesses of each
approach

* Quantum: Explore more complex networks

« HPC: Auto tune on Limited Boltzmann machines
model

* Neuromorphic: Implement of Limited Boltzmann on
FPGA version of neuromorphic hardware
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Questions?
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