Practical Efficiency of Asynchronous Stochastic Gradient Descent

Onkar Bhardwaj, Guojing Cong

IBM TJ Watson Research Center 1101 Kitchawan Road, Yorktown Heights, NY, 10598

November, 2016

ASGD is popular in current studies and applications

- Derived from stochastic gradient descent (SGD)
- Reduces synchronization and communication overhead by tolerating stale gradient updates

- Recent analyses show ASGD converges with linear asymptotic speedup over SGD
- Examples: Downpour and EAMSGD

Each learner asynchronously repeats the following:

- Pull: Get the parameters from the server
- Compute: Compute the gradient with respect to randomly selected mini-batch (i.e., a certain number of samples from the dataset)
- Push and update: Communicate the gradient to the server. Server then updates the parameters by subtracting this newly communicated gradient multiplied by the learning rate

Practical efficiency

- Communication overhead
- Practical learning rates (and other parameters)
- Number of samples needed to reach target accuracies

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Datasets: ASGD with two different data sets: *CIFAR-10* and an in-house natural language processing data set from the finance industry – *NLC-F*.

Platform: IBM Power8 with an OSS high-density compute accelerator – 8 NVIDIA Tesla K80 GPUs connected by PCIe switches forming a binary tree. The host contains two Power8 chips, each with 12 cores

Implementation: *Downpour*: the learners are run on the GPUs, and the (sharded) parameter server is run on the host Power8 CPUs

Communication overhead

Figure: Breakdown of epoch time

Convergence

Figure: *Downpour* convergence for CIFAR10 with $\gamma = 0.1$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへ⊙

- $x_1 :=$ The initial parameter vector for ASGD
- $x^* := A$ local optima towards which ASGD proceeds

$$D_f := f(x_1) - f(x^*)$$

- M := Mini-batch size
- z := a randomly selected minibatch
- K := No. of mini-batches processed (or ASGD updates)

- p := Number of learners
- $\gamma \hspace{.1in}\coloneqq \hspace{.1in} \mathsf{Learning\ rate}$

Perhaps the convergence assumptions do not hold ?:

- Unbiased gradient: partial gradient G(x, z) of f(·) is an unbiased estimator of true gradient, i.e.,
 𝔼(G(x, z)) = ∇f(x)
- ▶ Bounded variance: the variance of partial gradient with respect to randomly selected mini-batches is bounded, i.e., $\mathbb{E}(\|G(x, z) \nabla f(x)\|^2) \le \sigma^2$
- Lipschitzian gradient: there exists a constant *L* such that ||∇f(x) − ∇f(y)|| ≤ L ||x − y|| for any two parameter vectors x, y

- ► Learning assumed in convergence (linear speedup) analysis is: $\sqrt{\frac{D_f}{MKL\sigma^2}}$
- Compute this projected learning rate:
 - Upper bound on gradient variance is estimated as the maximum of observed gradient variance
 - ▶ D_f as f(x₁) and used MK = 500,000 (MK is the total number of samples processed)

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

▶ γ=0.005, not 0.1

With the predicted learning rate

Figure: ASGD convergence for *CIFAR-10* with $\gamma = 0.005$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 二国 - のへで

Let \bar{R}_{K} denote the average expected gradient norm after the first *K* updates of ASGD, then from Theorem 1 in [LHL15]

$$ar{R}_K \leq rac{2D_f}{MK\gamma} + \sigma^2 L\gamma + 2\sigma^2 L^2 Mp\gamma^2$$
 (1)

s.t.
$$LM\gamma + 2L^2M^2p^2\gamma^2 \le 1$$
 (2)

Theorem

Let p > 1 be the number of learners and let $\alpha = \sqrt{\frac{K\sigma^2}{MLD_f}} \le p$, then the optimal ASGD convergence rate guarantee for 1 learner and p learners can differ by a factor of approximately $\frac{p}{\alpha}$.

Figure: The ratio of convergence rate guarantees obtained for various values of α and p

 α is a measure of (square root of) the number of mini-batches processed.

CIFAR-10 train accuracy

CIFAR-10 test accuracy

NLC-F train accuracy

NLC-F test accuracy

Challenges on current and emerging platforms

- Centralized parameter server becomes a bottleneck
- Sharded parameter server suffers inconsistency
- Narrow channel between learners (on GPUs) and parameter server (on CPU)

Conclusion and future work

 ASGD faces challenges on HPC systems with a large number of learners

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Other approaches need to be explored