
Practical Efficiency of Asynchronous
Stochastic Gradient Descent

Onkar Bhardwaj, Guojing Cong

IBM TJ Watson Research Center
1101 Kitchawan Road, Yorktown Heights, NY, 10598

November, 2016

ASGD is popular in current studies and applications

I Derived from stochastic gradient descent (SGD)
I Reduces synchronization and communication overhead by

tolerating stale gradient updates
I Recent analyses show ASGD converges with linear

asymptotic speedup over SGD
I Examples: Downpour and EAMSGD

ASGD in action

Each learner asynchronously repeats the following:
I Pull: Get the parameters from the server
I Compute: Compute the gradient with respect to randomly

selected mini-batch (i.e., a certain number of samples from
the dataset)

I Push and update: Communicate the gradient to the
server. Server then updates the parameters by subtracting
this newly communicated gradient multiplied by the
learning rate

Practical efficiency

I Communication overhead
I Practical learning rates (and other parameters)
I Number of samples needed to reach target accuracies

Experiments and observations of ASGD

Datasets: ASGD with two different data sets: CIFAR-10 and an
in-house natural language processing data set from the finance
industry – NLC-F.
Platform: IBM Power8 with an OSS high-density compute
accelerator – 8 NVIDIA Tesla K80 GPUs connected by PCIe
switches forming a binary tree. The host contains two Power8
chips, each with 12 cores
Implementation: Downpour: the learners are run on the
GPUs, and the (sharded) parameter server is run on the host
Power8 CPUs

Communication overhead

 0

 20

 40

 60

 80

 100

N C N C N C N C

p
e

rc
e

n
ta

g
e

computation
communication

8 4 2 1

Figure: Breakdown of epoch time

Convergence

 10

 20

 30

 40

 50

 60

 70

 80

 10 20 30 40 50 60 70 80 90 100

a
c
c
u
ra

c
y
 (

%
)

#epochs

p=1
p=2
p=8

p=16

Figure: Downpour convergence for CIFAR10 with γ = 0.1

Notations

x1 := The initial parameter vector for ASGD
x∗ := A local optima towards which ASGD proceeds
Df := f (x1)− f (x∗)

M := Mini-batch size
z := a randomly selected minibatch
K := No. of mini-batches processed (or ASGD updates)
p := Number of learners
γ := Learning rate

Why slower convergence?

Perhaps the convergence assumptions do not hold ?:

I Unbiased gradient: partial gradient G(x , z) of f (·) is an
unbiased estimator of true gradient, i.e.,
E(G(x , z)) = ∇f (x)

I Bounded variance: the variance of partial gradient with
respect to randomly selected mini-batches is bounded, i.e.,
E(‖G(x , z)−∇f (x)‖2) ≤ σ2

I Lipschitzian gradient: there exists a constant L such that
‖∇f (x)−∇f (y)‖ ≤ L ‖x − y‖ for any two parameter
vectors x , y

Learning rate!

I Learning assumed in convergence (linear speedup)

analysis is:
√

Df
MKLσ2

I Compute this projected learning rate:
I Upper bound on gradient variance is estimated as the

maximum of observed gradient variance
I Df as f (x1) and used MK = 500,000 (MK is the total

number of samples processed)
I γ=0.005, not 0.1

With the predicted learning rate

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 10 20 30 40 50 60 70 80 90 100

a
c
c
u
ra

c
y
 (

%
)

#epochs

p=1
p=2
p=8

p=16

Figure: ASGD convergence for CIFAR-10 with γ = 0.005

Sample complexity

Let R̄K denote the average expected gradient norm after the
first K updates of ASGD, then from Theorem 1 in [LHL15]

R̄K ≤ 2Df

MKγ
+ σ2Lγ + 2σ2L2Mpγ2 (1)

s.t. LMγ + 2L2M2p2γ2 ≤ 1 (2)

Theorem
Let p > 1 be the number of learners and let α =

√
Kσ2

MLDf
≤ p,

then the optimal ASGD convergence rate guarantee for 1
learner and p learners can differ by a factor of approximately p

α .

α

16 32 64 128 256

ra
ti
o
 (

c
o
n
v
 g

u
a
ra

n
te

e
)

0

5

10

15

20

25

30

p = 256

p = 512

Figure: The ratio of convergence rate guarantees obtained for various
values of α and p

α is a measure of (square root of) the number of mini-batches
processed.

CIFAR-10 train accuracy

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10 20 30 40 50 60 70 80 90 100

a
c
c
u
ra

c
y
 (

%
)

#epochs

Downpour
EAMSGD

(a) p = 2

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10 20 30 40 50 60 70 80 90 100

#epochs

(b) p = 4

 0

 10

 20

 30

 40

 50

 60

 70

 10 20 30 40 50 60 70 80 90 100

#epochs

(c) p = 8

 0

 10

 20

 30

 40

 50

 60

 70

 10 20 30 40 50 60 70 80 90 100

#epochs

(d) p = 16

CIFAR-10 test accuracy

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 10 20 30 40 50 60 70 80 90 100

a
c
c
u
ra

c
y
 (

%
)

#epochs

Downpour
EAMSGD

(e) p = 2

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10 20 30 40 50 60 70 80 90 100

#epochs

(f) p = 4

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10 20 30 40 50 60 70 80 90 100

#epochs

(g) p = 8

 0

 10

 20

 30

 40

 50

 60

 70

 10 20 30 40 50 60 70 80 90 100

#epochs

(h) p = 16

NLC-F train accuracy

 0

 20

 40

 60

 80

 100

 2
0

 4
0

 6
0

 8
0

 1
00

 1
20

 1
40

 1
60

 1
80

 2
00

a
c
c
u
ra

c
y
 (

%
)

#epochs

Downpour
EAMSGD

(i) p = 2

 0

 20

 40

 60

 80

 100

 2
0

 4
0

 6
0

 8
0

 1
00

 1
20

 1
40

 1
60

 1
80

 2
00

#epochs

(j) p = 4

 0

 20

 40

 60

 80

 100

 2
0

 4
0

 6
0

 8
0

 1
00

 1
20

 1
40

 1
60

 1
80

 2
00

#epochs

(k) p = 8

 0

 20

 40

 60

 80

 100

 2
0

 4
0

 6
0

 8
0

 1
00

 1
20

 1
40

 1
60

 1
80

 2
00

#epochs

(l) p = 16

NLC-F test accuracy

 0

 10

 20

 30

 40

 50

 60

 2
0

 4
0

 6
0

 8
0

 1
00

 1
20

 1
40

 1
60

 1
80

 2
00

a
c
c
u
ra

c
y
 (

%
)

#epochs

Downpour
EAMSGD

(m) p = 2

 0

 10

 20

 30

 40

 50

 60

 2
0

 4
0

 6
0

 8
0

 1
00

 1
20

 1
40

 1
60

 1
80

 2
00

#epochs

(n) p = 4

 0

 10

 20

 30

 40

 50

 60

 2
0

 4
0

 6
0

 8
0

 1
00

 1
20

 1
40

 1
60

 1
80

 2
00

#epochs

(o) p = 8

 0

 10

 20

 30

 40

 50

 60

 2
0

 4
0

 6
0

 8
0

 1
00

 1
20

 1
40

 1
60

 1
80

 2
00

#epochs

(p) p = 16

Challenges on current and emerging platforms

I Centralized parameter server becomes a bottleneck
I Sharded parameter server suffers inconsistency
I Narrow channel between learners (on GPUs) and

parameter server (on CPU)

Conclusion and future work

I ASGD faces challenges on HPC systems with a large
number of learners

I Other approaches need to be explored

