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ASGD is popular in current studies and applications

I Derived from stochastic gradient descent (SGD)
I Reduces synchronization and communication overhead by

tolerating stale gradient updates
I Recent analyses show ASGD converges with linear

asymptotic speedup over SGD
I Examples: Downpour and EAMSGD



ASGD in action

Each learner asynchronously repeats the following:
I Pull: Get the parameters from the server
I Compute: Compute the gradient with respect to randomly

selected mini-batch (i.e., a certain number of samples from
the dataset)

I Push and update: Communicate the gradient to the
server. Server then updates the parameters by subtracting
this newly communicated gradient multiplied by the
learning rate



Practical efficiency

I Communication overhead
I Practical learning rates (and other parameters)
I Number of samples needed to reach target accuracies



Experiments and observations of ASGD

Datasets: ASGD with two different data sets: CIFAR-10 and an
in-house natural language processing data set from the finance
industry – NLC-F.
Platform: IBM Power8 with an OSS high-density compute
accelerator – 8 NVIDIA Tesla K80 GPUs connected by PCIe
switches forming a binary tree. The host contains two Power8
chips, each with 12 cores
Implementation: Downpour: the learners are run on the
GPUs, and the (sharded) parameter server is run on the host
Power8 CPUs



Communication overhead
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Figure: Breakdown of epoch time



Convergence
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Figure: Downpour convergence for CIFAR10 with γ = 0.1



Notations

x1 := The initial parameter vector for ASGD
x∗ := A local optima towards which ASGD proceeds
Df := f (x1)− f (x∗)

M := Mini-batch size
z := a randomly selected minibatch
K := No. of mini-batches processed (or ASGD updates)
p := Number of learners
γ := Learning rate



Why slower convergence?

Perhaps the convergence assumptions do not hold ?:

I Unbiased gradient: partial gradient G(x , z) of f (·) is an
unbiased estimator of true gradient, i.e.,
E(G(x , z)) = ∇f (x)

I Bounded variance: the variance of partial gradient with
respect to randomly selected mini-batches is bounded, i.e.,
E(‖G(x , z)−∇f (x)‖2) ≤ σ2

I Lipschitzian gradient: there exists a constant L such that
‖∇f (x)−∇f (y)‖ ≤ L ‖x − y‖ for any two parameter
vectors x , y



Learning rate!

I Learning assumed in convergence (linear speedup)

analysis is:
√

Df
MKLσ2

I Compute this projected learning rate:
I Upper bound on gradient variance is estimated as the

maximum of observed gradient variance
I Df as f (x1) and used MK = 500,000 (MK is the total

number of samples processed)
I γ=0.005, not 0.1



With the predicted learning rate
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Figure: ASGD convergence for CIFAR-10 with γ = 0.005



Sample complexity

Let R̄K denote the average expected gradient norm after the
first K updates of ASGD, then from Theorem 1 in [LHL15]

R̄K ≤ 2Df

MKγ
+ σ2Lγ + 2σ2L2Mpγ2 (1)

s.t. LMγ + 2L2M2p2γ2 ≤ 1 (2)

Theorem
Let p > 1 be the number of learners and let α =

√
Kσ2

MLDf
≤ p,

then the optimal ASGD convergence rate guarantee for 1
learner and p learners can differ by a factor of approximately p

α .
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Figure: The ratio of convergence rate guarantees obtained for various
values of α and p

α is a measure of (square root of) the number of mini-batches
processed.



CIFAR-10 train accuracy
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CIFAR-10 test accuracy
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NLC-F train accuracy
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NLC-F test accuracy
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Challenges on current and emerging platforms

I Centralized parameter server becomes a bottleneck
I Sharded parameter server suffers inconsistency
I Narrow channel between learners (on GPUs) and

parameter server (on CPU)



Conclusion and future work

I ASGD faces challenges on HPC systems with a large
number of learners

I Other approaches need to be explored


