
Distributed Training of Deep Neural
Networks: Theoretical and Practical Limits

of Parallel Scalability

Janis Keuper

Itwm.fraunhofer.de/ml

Competence Center High Performance Computing
Fraunhofer ITWM, Kaiserslautern, Germany

Outline

I Overview: distributed parallel training of DNNs

II Experimental Evaluation

III Limitation I: Communication Bounds

IV Limitation II: Skinny Matrix Multiplication

V Limitation III: Data I/O

Minimize Loss-Function via gradient descent (high dimensional and NON CONVEX!)

Computed via Back Propagation Algorithm:

1. feed forward and compute activation
2. error by layer
3. compute derivative by layer

Training Deep Neural Networks
Underlying Optimization Problem

Optimization Problem

Layer 1

Layer 2

Layer n-1

Layer n

...

forward backward

By Stochastic Gradient Descent (SGD)

1. Initialize weights W at random
2. Take small random subset X (=batch) of the train data
3. Run X through network (forward feed)
4. Compute Loss
5. Compute Gradient
6. Propagate backwards through the network
7. Update W

Repeat 2-8 until convergence

Parallelization
Common approaches to parallelize SGD for DL

Parallelization of SGD is very hard: it is an inherently sequential algorithm

1. Start at some state t (point in a billion dimensional space)
2. Introduce t to data batch d1
3. Compute an update (based on the objective function)
4. Apply the update →t+1

How to gain Speedup ?

Make faster updates
Make larger updates State t State t+1

State t+2

d1 d2
d3

Parallelization
Common approaches to parallelize SGD for DL

Layer 1

Layer 2

Layer n-1

Layer n

...

forward backwardInternal parallelization

● Dense matrix multiplication:
● standard blas sgemm
● MKL, Open-Blas
● CuBlas

● Task parallelization for special Layers
● Cuda-CNN for fast convolutions

Parallelization
Common approaches to parallelize SGD for DL

Layer 1

Layer 2

Layer n-1

Layer n

...

forward

External: data parallelization over the data batch

Layer 1

Layer 2

Layer n-1

Layer n

...

forward

Layer 1

Layer 2

Layer n-1

Layer n

...

forward

Master

1. Split batch
and send to
workers

Parallelization
Common approaches to parallelize SGD for DL

Layer 1

Layer 2

Layer n-1

Layer n

...

forward backward

External: data parallelization over the data batch

Layer 1

Layer 2

Layer n-1

Layer n

...

forward backward

Layer 1

Layer 2

Layer n-1

Layer n

...

forward backward

Master

1. Split batch
and send to
workers

2. Workers compute
forward+backward
and send gradients
to master

Parallelization
Common approaches to parallelize SGD for DL

Layer 1

Layer 2

Layer n-1

Layer n

...

forward backward

External: data parallelization over the data batch

Layer 1

Layer 2

Layer n-1

Layer n

...

forward backward

Layer 1

Layer 2

Layer n-1

Layer n

...

forward backward

Master

1. Split batch
and send to
workers

2. Workers compute
forward+backward
and send gradients
to master

3. Master combines
gradients and
computes updates
of W. Sends new
W' to workers

Parallelization
Common approaches to parallelize SGD for DL

External: data parallelization over the data batch

Master

1. Split batch
and send to
workers

2. Workers compute
forward+backward
and send gradients
to master

3. Master combines
gradients and
computes updates
of W. Sends new
W' to workers

Speedup

Experimental Evaluation

1 2 4 8 16 32 64 128
1

2

4

8

16

32

64

128

AlexNet (B=256) AlexNet (B=1024) AlexNet [1]

GoogLeNet (B=32) GoogLeNet (B=256) GoogLeNet (B=1024)

GoogLeNet [6] (B=1024) Linear Speedup

nodes

S
p

e
e

d
u

p

Scaling Distributed Parallel Synchronous SGD Training

Experimental Setup:
HPC Cluster with FDR Infiniband Interconnect
K80 GPUs / Xeon E5 CPUs
Intel Caffe Distribution

Limitation I
Distributed SGD is heavily Communication Bound

Gradients have the same size as the model
● Model size can be hundreds of MB
● Iteration time (GPU) <1s

Communication Bound
Experimental Evaluation

Communication Bottleneck
Possible Solutions

● Network Design
● Avoid fully connected Layers for smaller models (see GoogLeNet vs AlexNet)

● Reduce Model Size

● Reduce Floating Point precision (8 Bit is enough)

● Reduce / Avoid Communication
● Sparse Updates
● Compression
● Asynchronous Updates

Janis Keuper and Franz-Josef Pfreundt. 2015. Asynchronous parallel stochastic gradient descent: a numeric core for scalable
distributed machine learning algorithms. In Proceedings of the Workshop on Machine Learning in High-Performance Computing
Environments (MLHPC '15). ACM, New York, NY, USA, , Article 1 , 11 pages. DOI=http://dx.doi.org/10.1145/2834892.2834893

Experimental Evaluation
Assuming free Communication

256 128 64 32 16 8 4 2 1
1

2

4

8

16

32

64

128

256

Single Node Speedup by Batch Size

AlexNet

CPU

GPU

KNL

linear speedup

batch size

sp
ee

du
p

Simulating free communication:

Single Node Optimization
with reduced Bach size

Experimental Evaluation
Compute Times Layer by Layer (assuming free Communication)

256 128 64 32 16 8 4 2 1
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Compute time by Layer

AlexNet (GPU + cuDNN)

Split

SoftmaxWithLoss

ReLU

Pooling

LRN

InnerProduct

Dropout

Convolution

Concat

batch size

128 64 32 16 8 4 2 1
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

GoogLeNet (GPU + cuDNN)

Split

SoftmaxWithLoss

ReLu

Pooling

LRN

InnerProduct

Dropout

Convolution

Concat

batch size

Experimental Evaluation
Speedup Layer by Layer (assuming free Communication)

128 64 32 16 8 4 2 1
0.2

0.5

1.0

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

GoogLeNet (CPU)

Concat

Convolution

Data

Dropout

InnerProduct

LRN

Pooling

ReLu

SoftmaxWithLoss

Split

Linear Scaling

batch size

256 128 64 32 16 8 4 2 1
0.5

1.0

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

512.0

GoogLeNet (GPU + cuDNN)

Concat

Convolution

Data

Dropout

InnerProduct

LRN

Pooling

ReLU

SoftmaxWithLoss

Split

Linear Speed-up

batch size

Experimental Evaluation
Speedup Matrix Multiplication

256 128 64 32 16 8 4 2 1
1

2

4

8

16

32

64

128

256

MKL SGEMM

linear scaling

batch size
sp

ee
du

p

Computing Fully Connected Layers:

Single dense Matrix Multiplication

Theoretical Limits
Parallelizing “Skinny” Matrix Multiplication

Problem: Batch size decreasing with distributed scaling

Hard Theoretic Limit: b > 0

→ GoogLeNet: No Scaling beyond 32 Nodes
→ AlexNet: Limit at 256 Nodes

External Parallelization hurts the internal (BLAS / cuBlas) parallelization
even earlier.

In a nutshell: for skinny matrices there is simply not enough work for
efficient internal parallelization over many threads.

Experimental Evaluation
Increasing the Batch Size

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

256

512

1024

2048

Iteration

A
cc

u
ra

cy

Solution proposed in
literature:

Increase Batch size

But:

Linear speedup against
original Problem only if we
increase step size

This leads to loss of accuracy

Theoretical Limits
Increasing the Batch Size

N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P.
Tang. On large-batch training for deep learning: Generalization gap and
sharp minima. arXiv preprint arXiv:1609.04836, 2016.

Theoretical analysis: larger Batch sizes will lead to worse generalization
properties.

In a Nutshell: reduced noise causes overfitting to sharp saddle points.

Distributed I/O

256 128 64 32 16 8 4 2 1
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Compute time by Layer

AlexNet (GPU + cuDNN)

Split

SoftmaxWithLoss

ReLU

Pooling

LRN

InnerProduct

Dropout

Data

Convolution

Concat

batch size

Results shown for SINGLE node access
to a Lustre working directory
(HPC Cluster, FDR-Infiniband)

Distributed File Systems are another Bottleneck !

256 128 64 32 16 8 4 2 1
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Compute time by Layer

AlexNet (GPU + cuDNN)

Split

SoftmaxWithLoss

ReLU

Pooling

LRN

InnerProduct

Dropout

Convolution

Concat

batch size

Results shown for SINGLE node
Data on local SSD.

Distributed I/O
Distributed File Systems are another Bottleneck !

● Network bandwidth is already exceeded by the SGD communication

● Worst possible file access pattern:

● Access many small files at random

Distributed I/O
Possible Solution

Visit us at Booth 1243

Current Project based on our BeeGFS BeeOND:

● Build temp file system over SSDs on compute nodes

● Keep data close

● Every compute node is a meta-data server

● Combine all files in one large binary with fixed offsets

● BeeGFS can handle simultaneous access

Conclusions

The main problem with training DNNs via distributed SGDs is that the
computation load per iteration is to low.

This problem will further increase with faster compute units (GPUs).

Possible solutions:

Change Network to handle the overfitting problem for large Batch sizes (?)

Alternative optimization methods (SGD is not the only way).

Appendix
Effect of optimized Convolution Functions (cuDNN + MKL17)

128 64 32 16 8 4 2 1
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

GoogLeNet (GPU)

Split

SoftmaxWithLoss

ReLu

Pooling

LRN

InnerProduct

Dropout

Convolution

Concat

batch size

128 64 32 16 8 4 2 1
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

GoogLeNet (GPU + cuDNN)

Split

SoftmaxWithLoss

ReLu

Pooling

LRN

InnerProduct

Dropout

Convolution

Concat

batch size

Appendix
KNL

409620481024 512 256 128 64 32 16 8 4 2 1
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

AlexNet (KNL + MKL17)

Split

SoftmaxWithLoss

ReLU

Pooling

LRN

InnerProduct

Dropout

Data

Convolution

Concat

batch size

409620481024 512 256 128 64 32 16 8 4 2 1
1.0

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

512.0

1024.0

2048.0

4096.0

AlexNet (KNL + MKL17)

Concat

Convolution

Data

Dropout

InnerProduct

LRN

Pooling

ReLU

SoftmaxWithLoss

Split

Linear Speed-uo

batch size

Appendix
Amdahls Law: Non-Scaling Layers

1 2 4 8 16 32 64 128 256 512 10242048
1

10

100

1000

Effect of non-scaling layers

by Amdahls Law

AlexNet GPU

GoogLeNet GPU

nodes

sp
ee

du
p

