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Minimize Loss-Function via gradient descent (high dimensional and NON CONVEX!)

Computed via Back Propagation Algorithm:

1. feed forward and compute activation
2. error by layer
3. compute derivative by layer 

Training Deep Neural Networks
Underlying Optimization Problem 



Optimization Problem
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By Stochastic Gradient Descent (SGD) 

1.  Initialize weights W at random 
2.  Take small random subset X (=batch) of the train data
3.  Run X through network (forward feed)
4.  Compute Loss
5.  Compute Gradient
6.  Propagate backwards through the network
7.  Update W

Repeat 2-8 until convergence    



Parallelization 
Common approaches to parallelize SGD for DL 

Parallelization of SGD is very hard:  it is an inherently sequential algorithm

1. Start at some state t (point in a billion dimensional space)
2. Introduce t to data batch d1
3. Compute an update (based on the objective function)
4. Apply the update →t+1

How to gain Speedup ?

Make faster updates
Make larger updates State t State t+1

State t+2

d1 d2
d3



Parallelization 
Common approaches to parallelize SGD for DL 
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forward       backwardInternal parallelization 

● Dense matrix multiplication: 
● standard blas sgemm
● MKL, Open-Blas
● CuBlas 

● Task parallelization for special Layers
● Cuda-CNN for fast convolutions



Parallelization 
Common approaches to parallelize SGD for DL 
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Parallelization 
Common approaches to parallelize SGD for DL 

External: data parallelization over the data batch

Master

1. Split batch
and send to 
workers

2. Workers compute 
forward+backward 
and send gradients 
to master

3. Master combines 
gradients and 
computes updates 
of W. Sends new 
W' to workers

Speedup



Experimental Evaluation
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Scaling Distributed Parallel Synchronous SGD Training 

Experimental Setup:
HPC Cluster with FDR Infiniband Interconnect
K80 GPUs / Xeon E5 CPUs 
Intel Caffe Distribution



Limitation I
Distributed SGD is heavily Communication Bound 

Gradients have the same size as the model
● Model size can be hundreds of MB
● Iteration time (GPU) <1s 



Communication Bound
Experimental Evaluation 



Communication Bottleneck 
Possible Solutions 

● Network Design
● Avoid fully connected Layers for smaller models (see GoogLeNet vs AlexNet)

 
● Reduce Model Size

● Reduce Floating Point precision (8 Bit is enough)  

● Reduce / Avoid Communication
● Sparse Updates
● Compression
● Asynchronous Updates 

Janis Keuper and Franz-Josef Pfreundt. 2015. Asynchronous parallel stochastic gradient descent: a numeric core for scalable 
distributed machine learning algorithms. In Proceedings of the Workshop on Machine Learning in High-Performance Computing 
Environments (MLHPC '15). ACM, New York, NY, USA, , Article 1 , 11 pages. DOI=http://dx.doi.org/10.1145/2834892.2834893 



Experimental Evaluation
Assuming free Communication 
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Simulating free communication:

Single Node Optimization
with reduced Bach size



Experimental Evaluation
Compute Times Layer by Layer (assuming free Communication) 
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Experimental Evaluation
Speedup Layer by Layer (assuming free Communication) 
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Experimental Evaluation
Speedup Matrix Multiplication 
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Computing Fully Connected Layers:

Single dense Matrix Multiplication



Theoretical Limits 
Parallelizing “Skinny” Matrix Multiplication 

Problem: Batch size decreasing with distributed scaling

Hard Theoretic Limit: b > 0   

→  GoogLeNet: No Scaling beyond 32 Nodes
→ AlexNet: Limit at 256 Nodes

External Parallelization hurts the internal (BLAS / cuBlas) parallelization
even earlier.

In a nutshell: for skinny matrices there is simply not enough work for 
efficient internal parallelization over many threads. 

   



Experimental Evaluation
Increasing the Batch Size 
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Solution proposed in 
literature:

Increase Batch size

But:

Linear speedup against 
original Problem only if we 
increase step size

This leads to loss of accuracy  



Theoretical Limits
Increasing the Batch Size 

N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P.
Tang. On large-batch training for deep learning: Generalization gap and
sharp minima. arXiv preprint arXiv:1609.04836, 2016.

Theoretical analysis: larger Batch sizes will lead to worse generalization 
properties.

In a Nutshell: reduced noise causes overfitting to sharp saddle points.   



Distributed I/O
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Results shown for SINGLE node access 
to a Lustre working directory 
(HPC Cluster, FDR-Infiniband) 

Distributed File Systems are another Bottleneck ! 
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Results shown for SINGLE node 
Data on local SSD. 



Distributed I/O
Distributed File Systems are another Bottleneck ! 

● Network bandwidth is already exceeded by the SGD communication 

● Worst possible file access pattern:

● Access many small files at random 



Distributed I/O
Possible Solution 

Visit us at Booth 1243

Current Project based on our BeeGFS BeeOND:

● Build temp file system over SSDs on compute nodes

● Keep data close

● Every compute node is a meta-data server 

● Combine all files in one large binary with fixed offsets

● BeeGFS can handle simultaneous access 



Conclusions

The main problem with training DNNs via distributed SGDs is that the 
computation load per iteration is to low.

This problem will further increase with faster compute units (GPUs).

Possible solutions: 

Change Network to handle the overfitting problem for large Batch sizes (?)

Alternative optimization methods (SGD is not the only way).  



Appendix
Effect of optimized Convolution Functions (cuDNN + MKL17)  
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Appendix
KNL  
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Appendix
Amdahls Law: Non-Scaling Layers  
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