Distributed Training of Deep Neural Networks: Theoretical and Practical Limits of Parallel Scalability

Janis Keuper

Itwm.fraunhofer.de/ml

Competence Center High Performance Computing Fraunhofer ITWM, Kaiserslautern, Germany

Outline

- **Overview: distributed parallel training of DNNs**
- **Experimental Evaluation**
- **III Limitation I: Communication Bounds**
- **IV Limitation II: Skinny Matrix Multiplication**
- **V** Limitation III: Data I/O

Training Deep Neural Networks

Underlying Optimization Problem

Computed via **Back Propagation** Algorithm:

- 1. feed forward and compute activation
- 2. error by layer
- 3. compute derivative by layer

$$egin{aligned} &\delta_i^{(n_l)} = rac{\partial}{\partial z_i^{(n_l)}} \;\; rac{1}{2} \|y - h_{W,b}(x)\|^2 = -(y_i - a_i^{(n_l)}) \cdot f'(z_i^{(n_l)}) \ &rac{\partial}{\partial W_{ij}^{(l)}} J(W,b;x,y) = a_j^{(l)} \delta_i^{(l+1)} \end{aligned}$$

Minimize Loss-Function via gradient descent (high dimensional and NON CONVEX!)

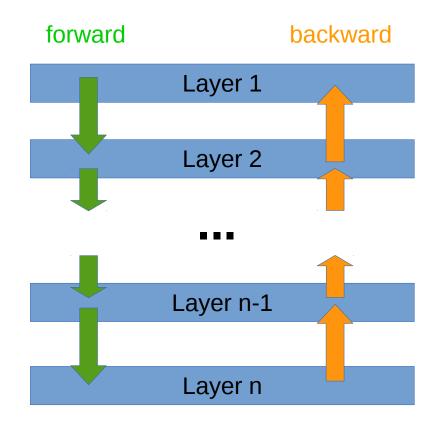
$$J(W,b) = \left[rac{1}{m}\sum_{i=1}^m J(W,b;x^{(i)},y^{(i)})
ight] + rac{\lambda}{2}\sum_{l=1}^{n_l-1}\sum_{i=1}^{s_l}\sum_{j=1}^{s_{l+1}} \left(W_{ji}^{(l)}
ight)^2$$

Optimization Problem

By Stochastic Gradient Descent (SGD)

- 1. Initialize weights W at random
- 2. Take small random subset X (=batch) of the train data
- 3. Run X through network (forward feed)
- 4. Compute Loss
- 5. Compute Gradient
- 6. Propagate backwards through the network
- 7. Update W

Repeat 2-8 until convergence



Common approaches to parallelize SGD for DL

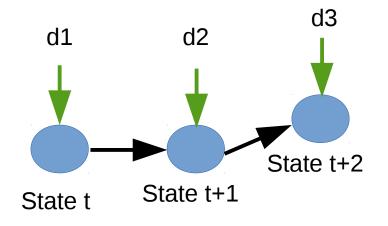
Parallelization of SGD is very hard: it is an inherently sequential algorithm

1. Start at some state **t** (point in a billion dimensional space)

- 2. Introduce t to data batch d1
- 3. Compute an update (based on the objective function)
- 4. Apply the update \rightarrow **t+1**

How to gain Speedup ?

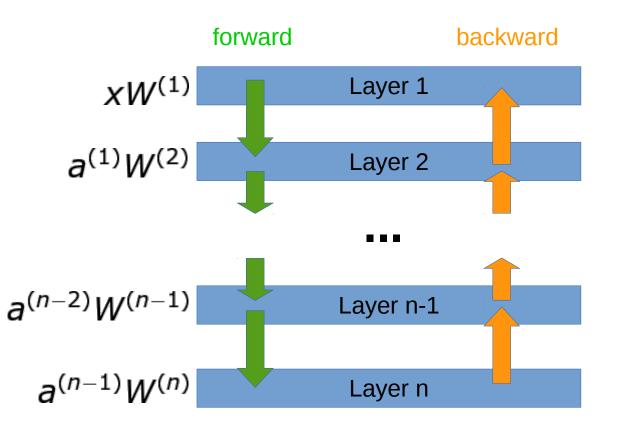
Make faster updates Make larger updates



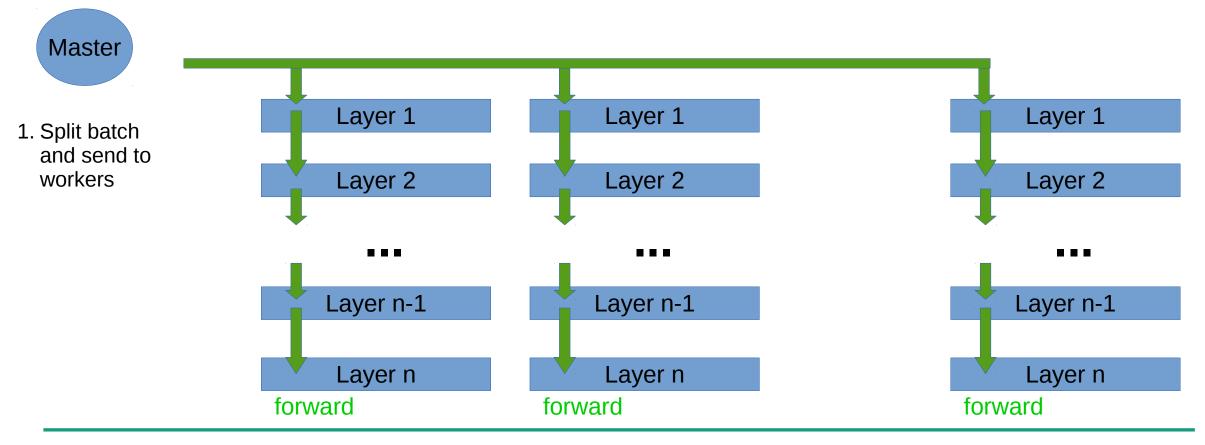
Common approaches to parallelize SGD for DL

Internal parallelization

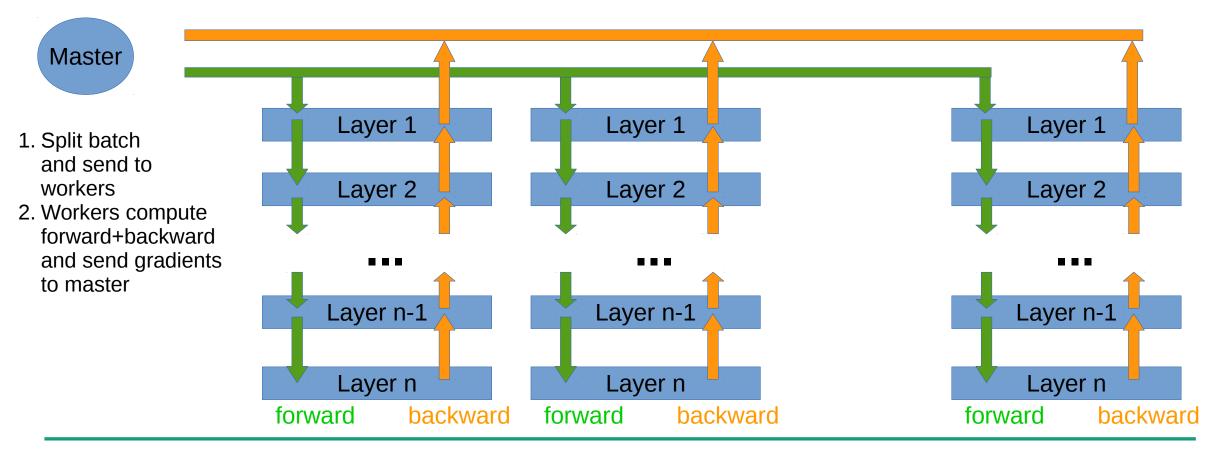
- Dense matrix multiplication:
 - standard blas sgemm
 - MKL, Open-Blas
 - CuBlas
- Task parallelization for special Layers
 - Cuda-CNN for fast convolutions



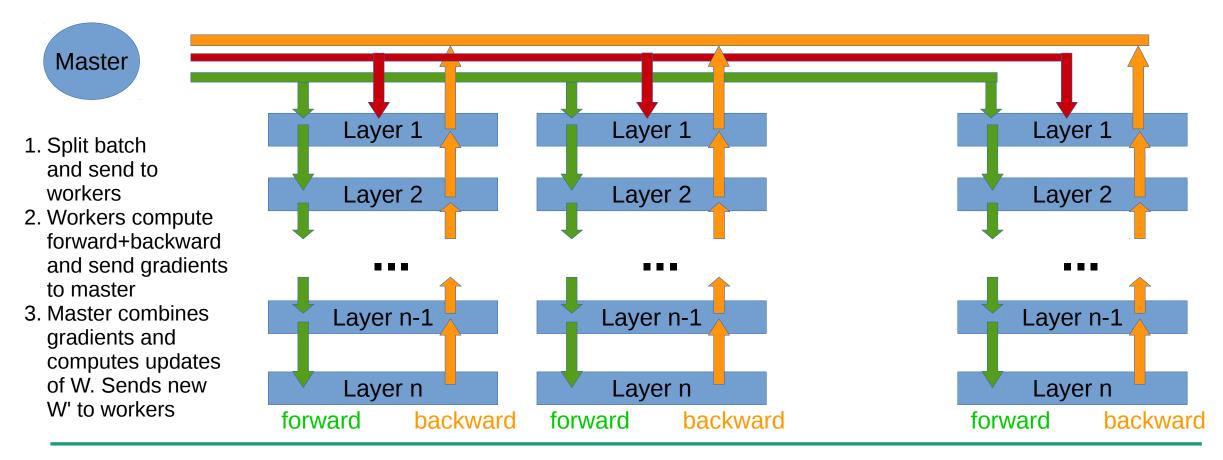
Common approaches to parallelize SGD for DL



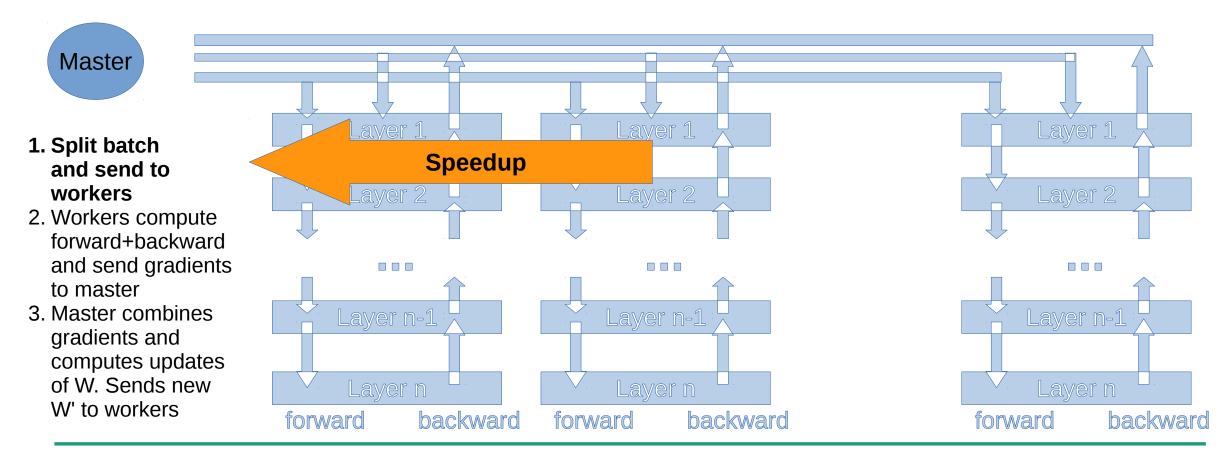
Common approaches to parallelize SGD for DL



Common approaches to parallelize SGD for DL



Common approaches to parallelize SGD for DL

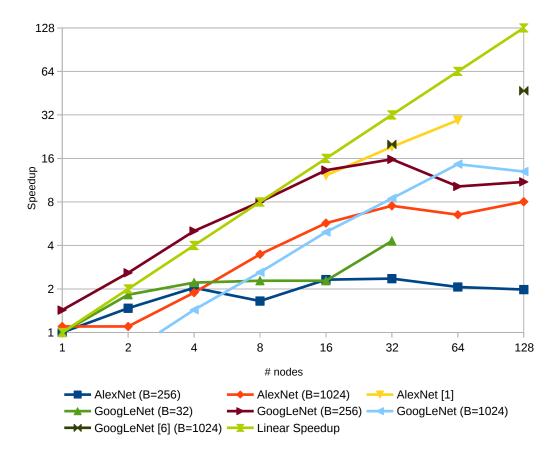


Scaling Distributed Parallel Synchronous SGD Training

Experimental Setup:

HPC Cluster with FDR Infiniband Interconnect K80 GPUs / Xeon E5 CPUs Intel Caffe Distribution

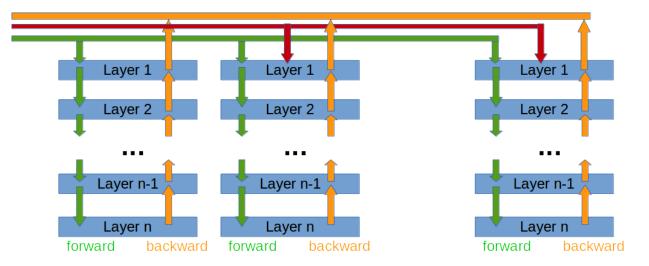
	AlexNet	GoogLeNet		
ExaFLOP to convergence	~ 0.8	~1.1		
# Iterations till convergence	450k	1000k		
Model size @32 bit FP	$\sim 250 \text{ MB}$	$\sim 50 \text{ MB}$		
Default batch size	256	32		
Default step-size	0.01	0.01		
# Layers	25	159		
# Convolutional layers	5	59		
# Fully-connected (FC) layers	3	1		
# Weights in FC layers	\sim 55M	$\sim 1 M$		
TABLE II				
PROPERTIES OF THE DEEP NEURAL NETWORKS USED FOR THE				
FOLLOWING BENCHMARKS.				



Limitation I Distributed SGD is heavily Communication Bound

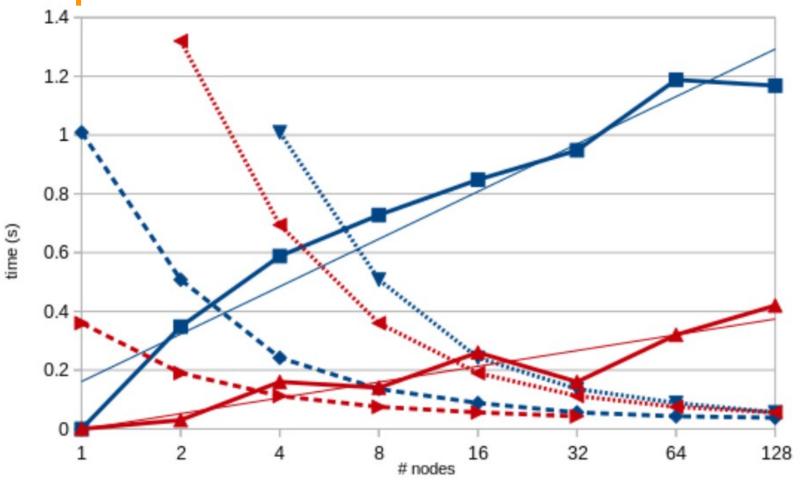
Gradients have the same size as the model

- Model size can be hundreds of MB
- Iteration time (GPU) <1s



Communication Bound

Experimental Evaluation



Linear (Com. time AlexNet)
Time/Iter. AlexNet GPU (B=1024)
Linear (Com. time GoogLeNet)
Time/Iter. GoogLeNet GPU (B=256)

Communication Bottleneck

Possible Solutions

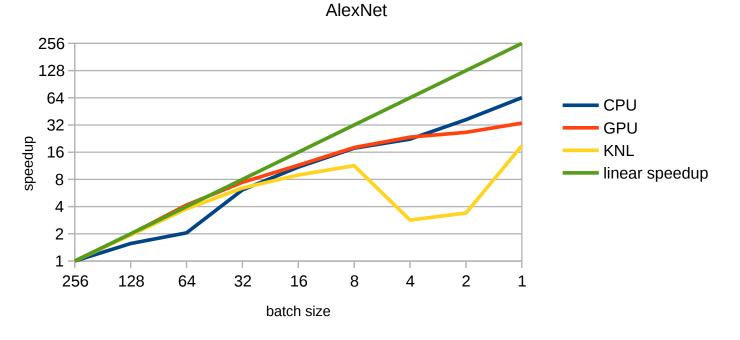
- Network Design
 - Avoid fully connected Layers for smaller models (see GoogLeNet vs AlexNet)
- Reduce Model Size
 - Reduce Floating Point precision (8 Bit is enough)
- Reduce / Avoid Communication
 - Sparse Updates
 - Compression
 - Asynchronous Updates

Janis Keuper and Franz-Josef Pfreundt. 2015. Asynchronous parallel stochastic gradient descent: a numeric core for scalable distributed machine learning algorithms. In Proceedings of the Workshop on Machine Learning in High-Performance Computing Environments (MLHPC '15). ACM, New York, NY, USA, , Article 1 , 11 pages. DOI=http://dx.doi.org/10.1145/2834892.2834893

Assuming free Communication

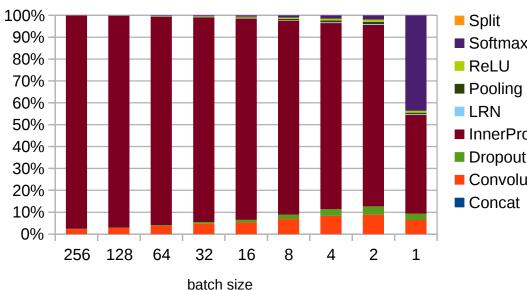
Simulating free communication:

Single Node Optimization with reduced Bach size



Single Node Speedup by Batch Size

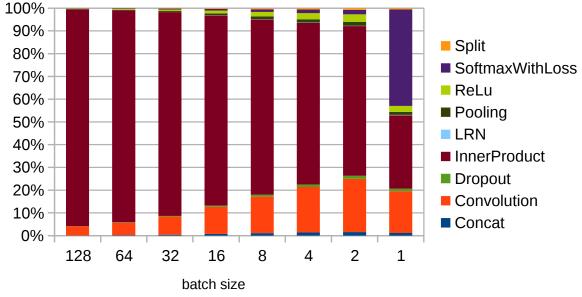
Compute Times Layer by Layer (assuming free Communication)



Compute time by Layer

AlexNet (GPU + cuDNN)

GoogLeNet (GPU + cuDNN)



Speedup Layer by Layer (assuming free Communication)

256.0 Concat 512.0 128.0 ---- Concat 256.0 Convolution 64.0 Convolution ---- Data 128.0 32.0 Data -----64.0 ---- Dropout 16.0 ---- Dropout 32.0 InnerProduct 8.0 InnerProduct 16.0 LRN 4.0 8.0 ---- Pooling ---- Pooling 2.0 4.0 1.0 2.0 ----- SoftmaxWithLoss SoftmaxWithLoss 0.5 1.0 0.2 0.5 2 128 64 32 8 16 Λ 128 256 64 32 16 2 8 batch size batch size

GoogLeNet (GPU + cuDNN)

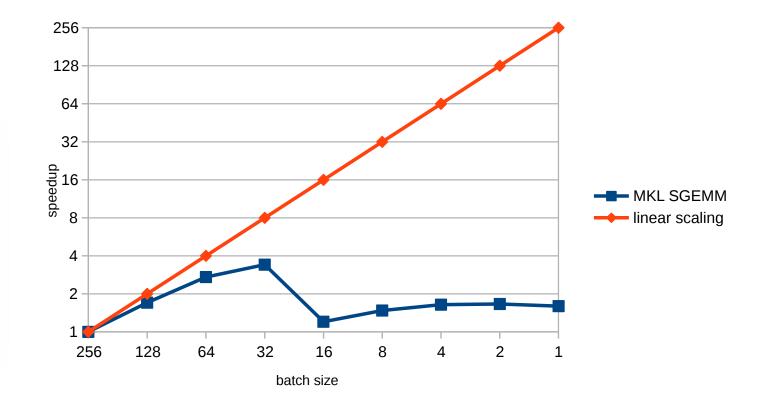
Speedup Matrix Multiplication

Computing Fully Connected Layers:

Single dense Matrix Multiplication

_			
Layer	# operations	matrix sizes	
Fully Connected	1	$b \times I * I \times O$	
Convolutional	b	$C \times I * I \times Z$	
Softmax	b	$I \times 1 * 1 \times 1$	
Definitions:	I		
I: Input size fro	om top layer		
O: Output size o	ut size of this layer		
b: local Batch s	local Batch size (train or validation)		
	Number of filters		
c: Number of in	Number of input channels (RBG image: $c = 3$)		
	Patch size (i.e. pixel)		
k: kernel size			
	Effective size after kernel application.		
For convolution $Z := \left(\sqrt{P} - \lfloor (k/2) \right)^2$			
TABLE III			
SIZE AND NUMBER OF OF THE MATRIX MULTIPLICATIONS (SGEM			

AND NUMBER OF OF THE MATRIX MULTIPLICATIONS (SGEMM) PER FORWARD PASS FOR SELECTED LAYERS.



Theoretical Limits

Parallelizing "Skinny" Matrix Multiplication

Problem: Batch size decreasing with distributed scaling

Hard Theoretic Limit: b > 0

- → GoogLeNet: No Scaling beyond 32 Nodes
- → AlexNet: Limit at 256 Nodes

External Parallelization hurts the internal (BLAS / cuBlas) parallelization even earlier.

In a nutshell: for skinny matrices there is simply not enough work for efficient internal parallelization over many threads.

Increasing the Batch Size

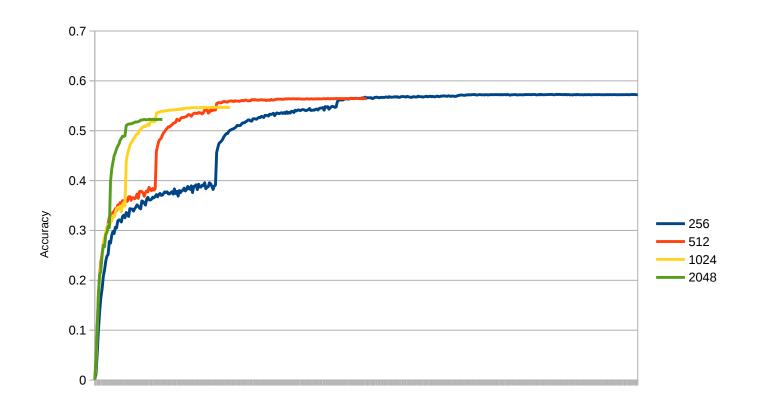
Solution proposed in literature:

Increase Batch size

But:

Linear speedup against original Problem only if we increase step size

This leads to loss of accuracy



Iteration

Theoretical Limits

Increasing the Batch Size

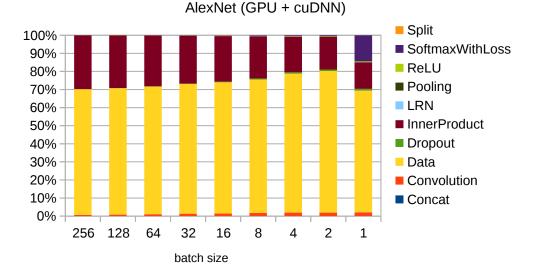
N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang. **On large-batch training for deep learning: Generalization gap and sharp minima.** arXiv preprint arXiv:1609.04836, 2016.

Theoretical analysis: larger Batch sizes will lead to worse generalization properties.

In a Nutshell: reduced noise causes overfitting to sharp saddle points.

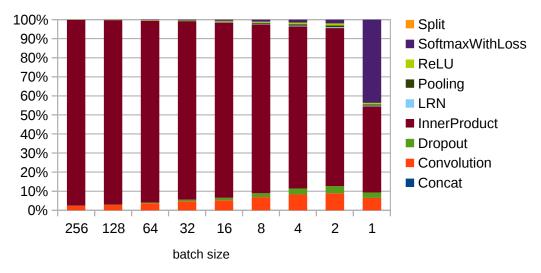
Distributed I/O

Distributed File Systems are another Bottleneck !



Compute time by Layer

AlexNet (GPU + cuDNN)



Results shown for SINGLE node access to a Lustre working directory (HPC Cluster, FDR-Infiniband) Results shown for SINGLE node Data on local SSD.

Distributed I/O

Distributed File Systems are another Bottleneck !

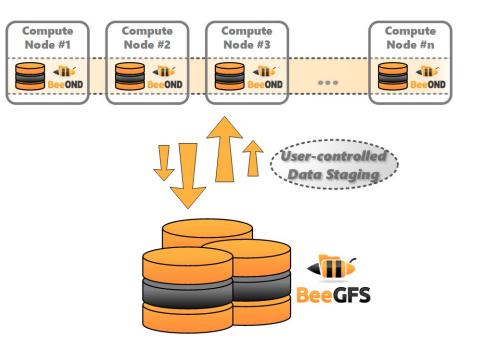
- Network bandwidth is already exceeded by the SGD communication
- Worst possible file access pattern:
 - Access many small files at random

Distributed I/O

Possible Solution

Current Project based on our **BeeGFS BeeOND**:

- Build temp file system over SSDs on compute nodes
 - Keep data close
 - Every compute node is a meta-data server
- Combine all files in one large binary with fixed offsets
 - BeeGFS can handle simultaneous access



Conclusions

The main problem with training DNNs via distributed SGDs is that the computation load per iteration is to low.

This problem will further increase with faster compute units (GPUs).

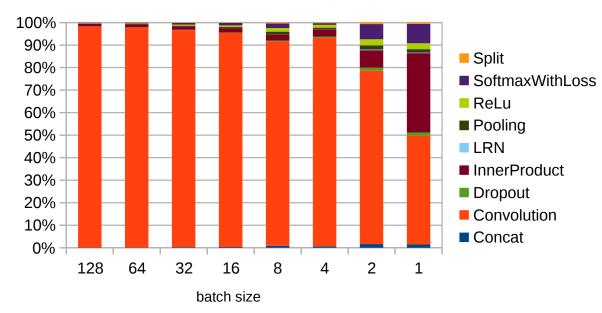
Possible solutions:

Change Network to handle the overfitting problem for large Batch sizes (?)

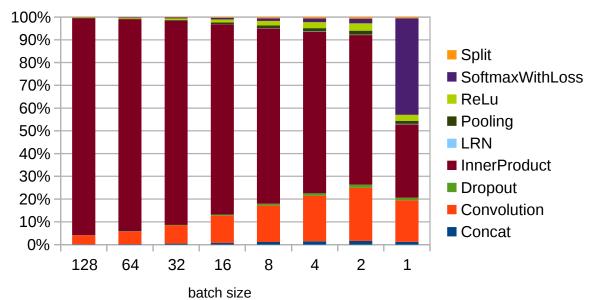
Alternative optimization methods (SGD is not the only way).

Appendix

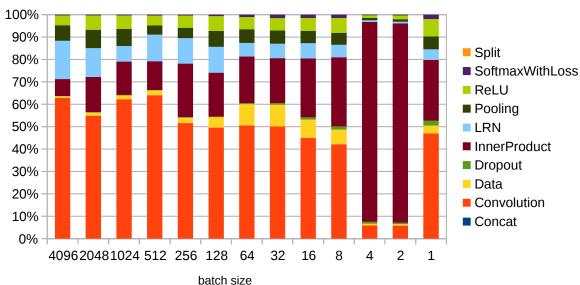
Effect of optimized Convolution Functions (cuDNN + MKL17)



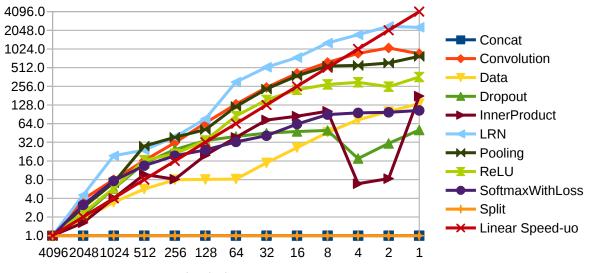
GoogLeNet (GPU)



Appendix KNL



AlexNet (KNL + MKL17)



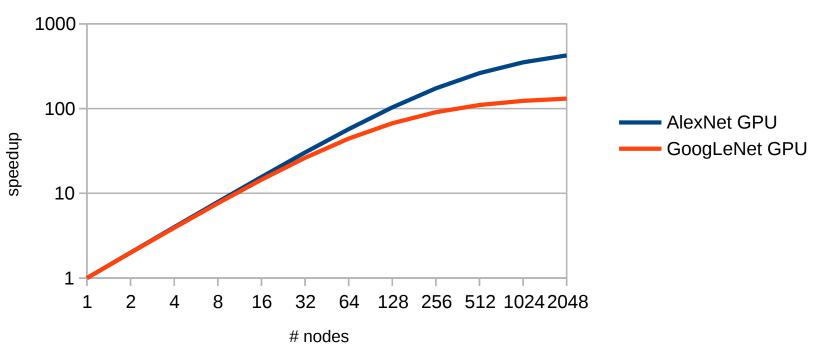
batch size

AlexNet (KNL + MKL17)

Appendix

Amdahls Law: Non-Scaling Layers

Effect of non-scaling layers



by Amdahls Law

