LBANN:
Livermore Big Artificial Neural Network HPC Toolkit

MLHPC 2015

Brian Van Essen, Hyojin Kim, Roger Pearce, Kofi Boakye, Barry Chen

Center for Applied Scientific Computing (CASC) + Computational Engineering
Nov. 15, 2015

T e

LLNL-PRES-679368 B Lawrence Livermore

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory 1
under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC Natlonal Laboratory




National Security, Science, and Economic Competitiveness
Applications are Generating Ever-Growing Collections of Data

81" |CSI Works With Yahoo Labs and
2 Lawrence Livermore Lab to Offer

Analytics Tools for Over 100 Million
Flickr Images and Videos o)
50TB Computing Program Runs Analysis on the Entire Flickr Creative Commons
Dataset, One of the Largest Public Multimedia Datasets Ever Released to the
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Pace of collection far exceeds human inspection ability...

“We have Big Data but Small Labels”
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Big Data ... Small Labels

Focus on training with unsupervised feature extraction
— Stacked auto-encoders
— Fine-tune with small labels

Moving beyond strict image processing

— Biological data sets

— Sensors from large scientific instruments (e.g. NIF)

— Incorporate imagery with additional sensor modalities (e.g. additive manufacturing)

Preliminary focus on large, fully connected dense layers
— Extend to unrolled RNN
— Adding support for convolutional kernels

Optimize for data-intensive HPC systems

— Distributed memory algorithm
— Low latency interconnect
— Node-local NVRAM

— State-of-the art distributed linear algebra library
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Extracting Parallelism

= Model Parallelism (train a single model faster)
— Distributed algorithm across multiple HPC nodes
— Future work will extend this to include attached GPU accelerators

= Data Parallelism (process data faster)
— Larger mini-batches reduce synchronization steps

— Leverage node-local NVRAM for data staging
« Overlap communication with computation

= Future work:
— GPU-offload
— Train multiple models concurrently
— Node-local data amplification
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Computational Horsepower is Required for the Deep Learning

= Andrew Ng's Deep Learning Rocket Analogy:
e Powerful engine: Use large Low Bias models

 Rocket fuel: Minimize Variance with vast training data
US to Build Two Flagship Supercomputers

O’\K 3 B Lawrence Livermore
RIDGE National Laboratory

SUMMI SIERRA
150-300 PFLOPS Peak Performance
IBM POWER9 CPU + NVIDIA Volta GPU
NVLink High Speed Interconnect
40 TFLOPS per Node, >3,400 Nodes
2017

HPC resources enable the training of massive-scale Deep
Learning networks

ICSI Works With Yahoo Labs and
Lawrence Livermore Lab to Offer
Analytics Tools for Over 100 Million
Flickr Images and Videos

50TB Computing Program Runs Analysis on the Entire Flickr Creative Commons
Dataset, One of the Largest Public Multimedia Datasets Ever Released to the
Public
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BERKELEY, CA—(Marketwired - Jul 3, 2014) - The International Computer Science Institute (ICSI), a
leading center for computer science research, today announced a collaboration with Yahoo Labs and
Lawrence Livermore National Laboratory to process and analyze the recently released Yahoo Flickr
Creative Commons 100 Million (YFCC100M) dataset, a publicly available corpus of user-generated
content comprising more than 100 million images and videos.

Vast collections of data fuel
the Deep Learning engine
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Distributing DNN across HPC nodes

= Each layer of model is distributed across Model Mg - Layer Hy
nodes

— Distributed matrix library (Elemental)
provides dense matrix operations

Model MO - Input Layer

= Input data is staged into node-local

NVRAM
— Each node stages a separate mini-batch

mini-batch O mini-batch 1 mini-batch 2 mini-batch 3
Input from Lustre
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Distributing data

= Active mini-batch is replicated from source node to each MPI rank

= First layer multiplies distributed matrix with replicated input data

Model M, - Layer H,

Model M, - Input Layer

Model M, - Layer H,

Model M, - Input Layer
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Experimental setup & Learning Task

LLNL Catalyst HPC system (324 nodes)

— 24 Xeon EP X5660 cores, 128 GB DRAM, and 800GB of node-local NVRAM
— Aggregate bandwidth of 24-32 GB/s to a Lustre parallel file system

— 48 Hyper-Threaded cores per node

ILSVRC2012 data set
— Image size: 256 x 256 x 3 = 196,608

Neural network topology ~197K - X - ~197K,

— Xis the number of neurons in a fully connected hidden layer
— Network sizes: 50K, 100K, 400K neurons

— Matrix sizes: 9.8B, 19.7B, 78.6B parameters

— Weight matrix sizes: 73GB, 147GB, 293GB (double FP)

Software stack (C++)

— Elemental distributed linear algebra library
— MPI communication

— Intel multi-threaded BLAS library
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Reconstruction error (sum. squares error) of LBANN autoencoder with ImageNet
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= Visualizing auto-encoder learning
— Reconstruction cost
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— Reconstructing training image after
100 and 200 epochs W"‘J\
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Strong Scaling: Time per unit work (mini-batch)

= # nodes versus mini-batch training time

= Processing multiple images per step
— Reduces number of synchronizations per epoch
— Computes a better gradient
— Balancing # of steps versus quality of step

= Test
— 50K neurons
— 8-128 nodes, 12 ranks per node
— mini-batch sizes from 8 - 2048 images

50

40

30

20

= Large mini-batches benefit greatly from additional

nodes
— Good scaling up to 64 nodes

= Smaller mini-batches have limited improvement
beyond 16 or 32 nodes

— Insufficient work to effectively amortize communication

overheads

Strong scaling - Training time of each mini batch (in sec)

Mini batch size = 512
Mini batch size = 2048

H @ Mini batch size = 8 @ \ini batch size = 16
Mini batch size =32 ~ e===Mini batch size = 64
@m==Mini batch size = 128 e Minj batch size = 256

Mini batch size = 1024

# Nodes

128
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Strong Scaling: Total time for fixed amount of work

Strong scaling: Mini-Batch size vs. Total training time (in sec)

Mini-batch size versus wall clock time 45000

— Fixed number of epochs s \ . Nodes— 16
\ Num. Nodes = 32
u Te St 33000 \ e==mNum. Nodes = 64
— 50K neurons 30000
@==»Num. Nodes = 128
— 8-128 nodes e

— 12 ranks per node 25000 \
— mini-batch sizes from 8 - 2048 images 20000

15000 [~ \

= Good scaling with smaller node counts

— Diminishing returns for MB > 128 10000 N

5000 \\ _
= On larger node counts problem size is too |, e ——

small to leverage resources 8 16 32 64 128 256 512 1024
— Too little work per node to offset Min-batch size
communication overhead
— Diminishing returns after 32 MB > 32
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Weak Scaling: Increasing problem size and compute resources

) Weak scaI[ng - Training time of each mini batch (in sec)
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= Scaling the number of neurons from 50K to 400K
— 8 nodes to 64 nodes, respectively
— Mini-batch size is 256 images.

= Processing time of each mini-batch if fairly constant as problem size and available resources increase
— ~10% variation in MB processing time

= Scaling up model sizes: matrices become more rectangular as # neurons increases
— 2D partitioning scheme for data distribution
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Tuning Elemental library algorithms
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= Test 19.25
— 400K neurons 18.75
— 256 image mini-batch 8

Training time of each mini batch (in sec)

32 64 128 256 512 1024 2048 4096 8192 16384
Block Size

= Data is distributed element-wise
— Exploring new block distributed implementation in v0.86-git

= Algorithmic block size affects operator implementation
— Performance levels out once a sufficiently large block size is reached for local BLAS libraries
— 19% performance difference between block size of 32 and 256+
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Load-balancing distributed algorithm versus node-local math lib.

__Training time of each mini batch (in sec)

19
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" 13 i i i
Test 6 9 Tasks per Node 12 18 24
— 400K neurons

— 128 image mini-batch
= Balancing # of tasks versus # of threads per task

= Tuning the available resources to Intel BLAS library
— BLAS library uses free cores for thread-parallel math operations

= 48 HyperThreaded cores per node
— # of tasks should evenly divide # cores
— 8 threads per task provided peak performance
— 18 tasks per node is 19% worse than average training time
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Local data staging & Parallelizing I/0O

, Parallel 1/O - Transfer+Load time (in sec)
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= Stage data to node-local NVRAM ", 2 s g 6 2 64 128

— Avoids additional memory pressure # of Parallel 1/O streams

— ~12.9x faster than PFS with 128 I/O streams

— Includes 18.56s overhead for copying and untar’ing the data from the Lustre PFS
— Dovetails into future data augmentation techniques

Sufficient 1/O parallelism significantly amortize data movement
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Summary: LBANN is a work in progress

= LBANN toolkit is optimized for:
— Unsupervised feature extraction
— Data-intensive High Performance Computing systems
— Large, distributed neural network models
— Elemental library provides scalable, distributed linear algebra library

= Next Steps:
— Convolutional, local receptive fields
— Integrate GPU accelerators (including multiple per node)
— Open source release
— Explore training multiple models in parallel
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