Asynchronous Parallel Stochastic Gradient Descent

A Numeric Core for Scalable Distributed Machine Learning Algorithms

J. Keuper and F.-J. Pfreundt

Competence Center High Performance Computing Fraunhofer ITWM, Kaiserslautern, Germany

Training Machine Learning Models

Formulation of the training problem:

- Set of observations (Training Samples) $X = \{x_0, \ldots, x_m\}$ with $x_i \in \mathbb{R}^n$
- [Super vised Learning] Set of (semantic) labels $Y = \{y_0, \ldots, y_m\}, y_i \in \mathbb{R}$.
- Loss function to determine quality the learned model,
 - Writing $x_j(w)$ or $(x_j, y_j)(w)$ for the loss of given samples
 - and model state w
- \rightarrow Optimization problem, minimizing the loss
 - Straight forward gradient descent optimization
 - Pitfalls: sparse, high dimensional target space \rightarrow Overfitting problem

Optimization Algorithms for ML

Simple Method BATCH-Optimization

- Run over ALL samples
- Compute average gradient of loss-function
- Make an update step in gradient direction

Algorithm 1 BATCH optimization with samples $X = \{x_0, \ldots, x_m\}$, iterations T and states w1: for all $t = 0 \ldots T$ do

2: Init $w_{t+1} = 0$

3: update
$$w_{t+1} = w_t - \epsilon \sum_{(X_j \in X)} \partial_w x_j(w_t)$$

- 4: $w_{t+1} = w_{t+1}/|X|$
- Computationally expensive
- Scales very poor in the number of samples

Optimization Algorithms for ML

Simple Method BATCH-Optimization

- Run over ALL samples
- Compute average gradient of loss-function
- Make an update step in gradient direction

Algorithm 1 BATCH optimization with samples $X = \{x_0, \ldots, x_m\}$, iterations T and states w

- 1: for all $t = 0 \dots T$ do
- 2: Init $w_{t+1} = 0$

3: update
$$w_{t+1} = w_t - \epsilon \sum_{(X_j \in X)} \partial_w x_j(w_t)$$

- 4: $w_{t+1} = w_{t+1}/|X|$
- Computationally expensive
- Scales very poor in the number of samples

Stochastic Gradient Descent

- Online algorithm
- Randomized
- Update after EACH sample

Algorithm 2 SGD with samples $X = \{x_0, \ldots, x_m\}$, iterations T, steps size ϵ and states w

Require: $\epsilon > 0$ 1: for all $t = 0 \dots T$ do 2: draw $j \in \{1 \dots m\}$ uniformly at random 3: update $w_{t+1} \leftarrow w_t - \epsilon \partial_w x_j(w_t)$ 4: return w_T

Optimization Algorithms for ML

Simple Method BATCH-Optimization

- Run over ALL samples
- Compute average gradient of loss-function
- Make an update step in gradient direction

Algorithm 1 BATCH optimization with samples $X = \{x_0, \ldots, x_m\}$, iterations T and states w

- 1: for all $t = 0 \dots T$ do
- 2: Init $w_{t+1} = 0$

3: update
$$w_{t+1} = w_t - \epsilon \sum_{(X_j \in X)} \partial_w x_j(w_t)$$

- 4: $w_{t+1} = w_{t+1}/|X|$
- Computationally expensive
- Scales very poor in the number of samples

Stochastic Gradient Descent

- Online algorithm
- Randomized
- Update after EACH sample

Algorithm 2 SGD with samples $X = \{x_0, \ldots, x_m\}$, iterations T, steps size ϵ and states w

Require: $\epsilon > 0$ 1: for all $t = 0 \dots T$ do 2: draw $j \in \{1 \dots m\}$ uniformly at random 3: update $w_{t+1} \leftarrow w_t - \epsilon \partial_w x_j(w_t)$

- 4: return w_T
- Much faster
- Better ML results
- But: intrinsically sequential !

Distributed Optimization Algorithms for ML

Map-reduce scheme possible for basically all ML algorithms:

[1] C. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. Bradski, A. Y. Ng, and K. Olukotun. Map-reduce for machine learning on multicore. Advances in neural information processing systems, 19:281, 2007.

Distributed Optimization Algorithms for ML

Map-reduce scheme possible for basically all ML algorithms:

[1] C. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. Bradski, A. Y. Ng, and K. Olukotun. Map-reduce for machine learning on multicore. Advances in neural information processing systems, 19:281, 2007.

BUT

Map-reduce only works for BATCH-solvers

Parallel Optimization Algorithms for ML

Hogwild!

[B. Recht, C. Re, S. Wright, and F. Niu. Hogwild: A lock-free approach to parallelizing stochastic gradient descent. In Advances in Neural Information Processing Systems, pages 693–701, 2011.]

- Parallel SGD for shared memory systems
- Basic Idea:
 - Write asynchronous updates to shared memory (without any save-guards)
 - NO mutual exclusion / locking what so ever \rightarrow Data races + race conditions
 - NO theoretical guarantees on converges
 - Only constraint: sparsity (time and/or space) to reduce probability of races
- BUT:
 - Works very well in practice \rightarrow fast, stable, ...
- Why does it work? → Robust nature of ML algorithms + **Cache hierarchy**

Distributed Optimization Algorithms for ML (cont.)

Parallel SGD on Distributed Systems

[*M. Zinkevich, M. Weimer, L. Li, and A. J. Smola.Parallelized* stochastic gradient descent. In Advances in Neural Information Processing Systems, pages 2595–2603, 2010.]

- Prove of convergence for distributed SGD with on one final Reducestep.
- \rightarrow Synchronization at the very end
- Only condition: constant step size

Algorithm 3 SimuParallelSGD with samples X = $\{x_0, \ldots, x_m\}$, iterations T, steps size ϵ , number of threads n and states wRequire: $\epsilon > 0, n > 1$ 1: define $H = \lfloor \frac{m}{n} \rfloor$ 2: randomly partition X, giving H samples to each node 3: for all $i \in \{1, \ldots, n\}$ parallel do randomly shuffle samples on node i4: init $w_0^i = 0$ 5: for all $t = 0 \dots T$ do 6: 7: get the *t*th sample on the *i*th node an compute update $w_{t+1}^i \leftarrow w_t^i - \epsilon \Delta_t(w_t^i)$ 8: 9: aggregate $v = \frac{1}{n} \sum_{i=1}^{n} w_t^i$ 10: return v

Distributed Asynchronous Stochastic Gradient Descent

ASGD has become very hot topic - especially in the light of Deep Learning (DL)

- DL currently mostly on GPUs (Hogwild SGD + derivates)
- Recent cluster based DL optimizations by Google, Microsoft, ...
 - Hogwild scheme with parameter servers and message passing updates

Distributed Asynchronous Stochastic Gradient Descent

ASGD has become very hot topic - especially in the light of Deep Learning (DL)

- DL currently mostly on GPUs (Hogwild SGD + derivates)
- Recent cluster based DL optimizations by Google, Microsoft, ...
 - Hogwild scheme with parameter servers and message passing updates
- Our ASGD approach (in an nutshell)
 - Asynchronous *communication* via RDMA
 - Partitioned Global Address Space model
 - Using the GASPI protocol implemented by our GPI2.0
 - Host to Host communication NO central parameter server
 - Hogwild like update scheme, several extensions
 - Mini-BATCH updates
 - Update states not gradients
 - Parzen-Window function selecting external updates

Asynchronous Communication

single-sided

Global Address Space Programming Interface GASPI

Distributed parallel ASGD: Our Algorithm

- Cluster Setup
 - Nodes with several CPUs
- Each thread operates independently in parallel

Distributed parallel ASGD: Our Algorithm

ASGD: Parzen-Window Updates

ASGD: Evaluation

Experimental setup I

- Simple K-Means Algorithm
 - Easy to implement \rightarrow no hidden optimization possible
 - Widely used
 - Artificial data for the cluster problem easy to produce and to control
- HPC Cluster Setup
 - FDR Infiniband interconnect
 - 16 CPUs / node (Xeon)
 - BeeGFS parallel file system
 - GPI2.0 asynchronous RDMA communication

Results I: Strong Scaling

K-Means: n=10, k=10~1TB Train Data

Results I: Convergence

K-Means: n=10, k=100~1TB Train Data

Results I: Effect of Asynchronous Communication

ASGD: Evaluation

Experimental setup II

- Deep Learning: training CNNs with modified **CAFFE** [https://github.com/BVLC/caffe]
 - New parallel input layer
 - parallel file read via BeeGFS
 - data completely in memory
 - New ASGD Solver
 - GPI communication on SGD update
 - GPI startup extensions to caffe cmd-line tool
- HPC Cluster Setup
 - 40GbE interconnect
 - 8 CPUs / node (Atom) currently only 1 thread per node
 - BeeGFS parallel file system
 - GPI2.0 asynchronous RDMA communication

MNIST benchmark

60000 train images 10000 test images

Parameter Space:

Layers: 10 # Params: ~500K ~4MB

DD 00 22222222 こ22ムム 7. 333 3 3 З З 3 3 2 3 33 3 3 4444**4**4 ч 444 4 4 4 55 6 0 77777 888888888888 8 881888 8 9 a 9 q 9 9 g

Parallel data input:

Split data into 1000 parts

Train on 1000 nodes.

ImageNet benchmark [ILSVRC2012]

~1.2 M train images 100 K test images ~ 20 K classes

OUTLOOK

Parameter Space:

Layers: 25 # Params: ~ 61 M ~500 MB

🗾 Fraunhofer

NVIDIA Titan (~2700 cores): ~1s/lter \rightarrow ~6 Days till convergence Xeon (single core): ~20s/lter ATOM (single core): ~60s/lter

Discussion, Outlook and Advertisement

- Upcoming ASGD DeepLearning Paper
 - Multi-Threaded Nodes
 - Full evaluation on large scale problems
 - Compare to other approaches (Dogwild, ...)
 - Caffe brach release
- New GPI2.0 Release 1.2
 - supporting GASPI over Ethernet
 - Supporting GPU to GPU RDMA communication
 - → www.gpi-site.com

[Visit us at Booth 2022]

