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Training Machine Learning Models

Formulation of the training problem:

● Set of observations (Training Samples)  

● [Super vised Learning] Set of (semantic) labels 

● Loss function to determine quality the learned model,
● Writing             or                     for the loss of given samples
● and model state 

● → Optimization problem, minimizing the loss
● Straight forward gradient descent optimization
● Pitfalls: sparse, high dimensional target space → Overfitting problem  



Optimization Algorithms for ML 

Simple Method BATCH-Optimization

● Run over ALL samples
● Compute average gradient of loss-function
● Make an update step in gradient direction

● Computationally expensive
● Scales very poor in the 

number of samples 
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Stochastic Gradient Descent

● Online algorithm
● Randomized
● Update after EACH sample

● Computationally expensive
● Scales very poor in the 

number of samples 

● Much faster
● Better ML results
● But: intrinsically sequential !  



Distributed Optimization Algorithms for ML 

Map-reduce scheme possible for basically all ML algorithms:

[1] C. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. Bradski, A. Y. Ng, and K. Olukotun. Map-reduce for 
machine learning on multicore. Advances in neural information processing systems, 
19:281, 2007.
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BUT

Map-reduce only works for BATCH-solvers



Parallel Optimization Algorithms for ML 

Hogwild!

[B. Recht, C. Re, S. Wright, and F. Niu. Hogwild: A lock-free approach to parallelizing 
stochastic gradient descent. In Advances in Neural Information Processing Systems, 
pages 693–701, 2011.]

● Parallel SGD for shared memory systems
● Basic Idea:

● Write asynchronous updates to shared memory (without any save-guards)
● NO mutual exclusion / locking what so ever → Data races + race conditions 
● NO theoretical guarantees on converges 
● Only constraint: sparsity (time and/or space) to reduce probability of races 

  
● BUT:

● Works very well in practice → fast, stable, ... 

● Why does it work? → Robust nature of ML algorithms + Cache hierarchy 



Distributed Optimization Algorithms for ML (cont.)  

Parallel SGD on Distributed Systems

[M. Zinkevich, M. Weimer, L. Li, and A. J. Smola.Parallelized 
stochastic gradient descent. In Advances in Neural 
Information Processing Systems, pages 2595–2603, 2010.]

● Prove of convergence for distributed SGD with on one final 
Reducestep.

→ Synchronization at the very end

● Only condition: constant step size



Distributed Asynchronous Stochastic Gradient Descent    

ASGD has become very hot topic – especially in the light of Deep Learning (DL)

● DL currently mostly on GPUs (Hogwild SGD + derivates)

● Recent cluster based DL optimizations by Google, Microsoft, …
● Hogwild scheme with parameter servers and message passing updates
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● DL currently mostly on GPUs (Hogwild SGD + derivates)

● Recent cluster based DL optimizations by Google, Microsoft, …
● Hogwild scheme with parameter servers and message passing updates

● Our ASGD approach (in an nutshell)

● Asynchronous communication via RDMA 
● Partitioned Global Address Space model

● Using the GASPI protocol implemented by our GPI2.0
● Host to Host communication - NO central parameter server 
 

● Hogwild like update scheme, several extensions 
● Mini-BATCH updates
● Update states – not gradients
● Parzen-Window function selecting external updates



Asynchronous Communication     

synchronous
Asynchronous

single-sided



Distributed parallel ASGD: Our Algorithm    

● Cluster Setup
● Nodes with several CPUs 

● Each thread operates 
independently in parallel



Distributed parallel ASGD: Our Algorithm    



ASGD: Parzen-Window Updates    



ASGD: Evaluation    

Experimental setup I

● Simple K-Means Algorithm
● Easy to implement → no hidden optimization possible
● Widely used
● Artificial data for the cluster problem easy to produce and to control 

● HPC Cluster Setup
● FDR Infiniband interconnect 
● 16 CPUs / node (Xeon)
● BeeGFS parallel file system 
● GPI2.0 asynchronous RDMA communication  



Results I: Strong Scaling    

K-Means:   n=10, k=10
~1TB Train Data



Results I: Convergence    

K-Means:   n=10, k=100
~1TB Train Data



Results I: Effect of Asynchronous Communication    



ASGD: Evaluation    

Experimental setup II

● Deep Learning: training CNNs with modified CAFFE [https://github.com/BVLC/caffe]
● New parallel input layer 

● parallel file read via BeeGFS
● data completely in memory

● New ASGD Solver 
● GPI communication on SGD update

● GPI startup extensions to caffe cmd-line tool  

● HPC Cluster Setup
● 40GbE interconnect 
● 8 CPUs / node (Atom) – currently only 1 thread per node
● BeeGFS parallel file system 
● GPI2.0 asynchronous RDMA communication  



Results II: training CNNs     

MNIST benchmark
60000 train images
10000 test images

Parameter Space:
Layers: 10
# Params: ~500K

~4MB 



Results II: training CNNs     

Parallel data input:

Split data into n parts of size 1/n.



Results II: training CNNs     

Parallel data input:

Split data into 1000 parts

Train on 1000 nodes.



Results II: training CNNs     

ImageNet benchmark [ILSVRC2012]
~1.2 M train images
100 K test images
~ 20 K classes

Parameter Space:
Layers: 25
# Params: ~ 61 M

~500 MB  

NVIDIA Titan (~2700 cores): ~1s/Iter → ~6 Days till convergence
Xeon (single core): ~20s/Iter
ATOM (single core): ~60s/Iter

www.image-net.org/

OUTLOOK



Discussion, Outlook and Advertisement 

● Upcoming ASGD DeepLearning Paper 
● Multi-Threaded Nodes
● Full evaluation on large scale problems
● Compare to other approaches (Dogwild, ...)
● Caffe brach release  

● New GPI2.0 Release 1.2 
● supporting GASPI over Ethernet
● Supporting GPU to GPU RDMA communication

● → www.gpi-site.com

[Visit us at Booth 2022]


