
Asynchronous Parallel Stochastic Gradient
Descent

-
A Numeric Core for Scalable Distributed

Machine Learning Algorithms

J. Keuper and F.-J. Pfreundt

Competence Center High Performance Computing
Fraunhofer ITWM, Kaiserslautern, Germany

Training Machine Learning Models

Formulation of the training problem:

● Set of observations (Training Samples)

● [Super vised Learning] Set of (semantic) labels

● Loss function to determine quality the learned model,
● Writing or for the loss of given samples
● and model state

● → Optimization problem, minimizing the loss
● Straight forward gradient descent optimization
● Pitfalls: sparse, high dimensional target space → Overfitting problem

Optimization Algorithms for ML

Simple Method BATCH-Optimization

● Run over ALL samples
● Compute average gradient of loss-function
● Make an update step in gradient direction

● Computationally expensive
● Scales very poor in the

number of samples

Optimization Algorithms for ML

Simple Method BATCH-Optimization

● Run over ALL samples
● Compute average gradient of loss-function
● Make an update step in gradient direction

Stochastic Gradient Descent

● Online algorithm
● Randomized
● Update after EACH sample

● Computationally expensive
● Scales very poor in the

number of samples

Optimization Algorithms for ML

Simple Method BATCH-Optimization

● Run over ALL samples
● Compute average gradient of loss-function
● Make an update step in gradient direction

Stochastic Gradient Descent

● Online algorithm
● Randomized
● Update after EACH sample

● Computationally expensive
● Scales very poor in the

number of samples

● Much faster
● Better ML results
● But: intrinsically sequential !

Distributed Optimization Algorithms for ML

Map-reduce scheme possible for basically all ML algorithms:

[1] C. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. Bradski, A. Y. Ng, and K. Olukotun. Map-reduce for
machine learning on multicore. Advances in neural information processing systems,
19:281, 2007.

Distributed Optimization Algorithms for ML

Map-reduce scheme possible for basically all ML algorithms:

[1] C. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. Bradski, A. Y. Ng, and K. Olukotun. Map-reduce for
machine learning on multicore. Advances in neural information processing systems,
19:281, 2007.

BUT

Map-reduce only works for BATCH-solvers

Parallel Optimization Algorithms for ML

Hogwild!

[B. Recht, C. Re, S. Wright, and F. Niu. Hogwild: A lock-free approach to parallelizing
stochastic gradient descent. In Advances in Neural Information Processing Systems,
pages 693–701, 2011.]

● Parallel SGD for shared memory systems
● Basic Idea:

● Write asynchronous updates to shared memory (without any save-guards)
● NO mutual exclusion / locking what so ever → Data races + race conditions
● NO theoretical guarantees on converges
● Only constraint: sparsity (time and/or space) to reduce probability of races

● BUT:

● Works very well in practice → fast, stable, ...

● Why does it work? → Robust nature of ML algorithms + Cache hierarchy

Distributed Optimization Algorithms for ML (cont.)

Parallel SGD on Distributed Systems

[M. Zinkevich, M. Weimer, L. Li, and A. J. Smola.Parallelized
stochastic gradient descent. In Advances in Neural
Information Processing Systems, pages 2595–2603, 2010.]

● Prove of convergence for distributed SGD with on one final
Reducestep.

→ Synchronization at the very end

● Only condition: constant step size

Distributed Asynchronous Stochastic Gradient Descent

ASGD has become very hot topic – especially in the light of Deep Learning (DL)

● DL currently mostly on GPUs (Hogwild SGD + derivates)

● Recent cluster based DL optimizations by Google, Microsoft, …
● Hogwild scheme with parameter servers and message passing updates

Distributed Asynchronous Stochastic Gradient Descent

ASGD has become very hot topic – especially in the light of Deep Learning (DL)

● DL currently mostly on GPUs (Hogwild SGD + derivates)

● Recent cluster based DL optimizations by Google, Microsoft, …
● Hogwild scheme with parameter servers and message passing updates

● Our ASGD approach (in an nutshell)

● Asynchronous communication via RDMA
● Partitioned Global Address Space model

● Using the GASPI protocol implemented by our GPI2.0
● Host to Host communication - NO central parameter server

● Hogwild like update scheme, several extensions
● Mini-BATCH updates
● Update states – not gradients
● Parzen-Window function selecting external updates

Asynchronous Communication

synchronous
Asynchronous

single-sided

Distributed parallel ASGD: Our Algorithm

● Cluster Setup
● Nodes with several CPUs

● Each thread operates
independently in parallel

Distributed parallel ASGD: Our Algorithm

ASGD: Parzen-Window Updates

ASGD: Evaluation

Experimental setup I

● Simple K-Means Algorithm
● Easy to implement → no hidden optimization possible
● Widely used
● Artificial data for the cluster problem easy to produce and to control

● HPC Cluster Setup
● FDR Infiniband interconnect
● 16 CPUs / node (Xeon)
● BeeGFS parallel file system
● GPI2.0 asynchronous RDMA communication

Results I: Strong Scaling

K-Means: n=10, k=10
~1TB Train Data

Results I: Convergence

K-Means: n=10, k=100
~1TB Train Data

Results I: Effect of Asynchronous Communication

ASGD: Evaluation

Experimental setup II

● Deep Learning: training CNNs with modified CAFFE [https://github.com/BVLC/caffe]
● New parallel input layer

● parallel file read via BeeGFS
● data completely in memory

● New ASGD Solver
● GPI communication on SGD update

● GPI startup extensions to caffe cmd-line tool

● HPC Cluster Setup
● 40GbE interconnect
● 8 CPUs / node (Atom) – currently only 1 thread per node
● BeeGFS parallel file system
● GPI2.0 asynchronous RDMA communication

Results II: training CNNs

MNIST benchmark
60000 train images
10000 test images

Parameter Space:
Layers: 10
Params: ~500K

~4MB

Results II: training CNNs

Parallel data input:

Split data into n parts of size 1/n.

Results II: training CNNs

Parallel data input:

Split data into 1000 parts

Train on 1000 nodes.

Results II: training CNNs

ImageNet benchmark [ILSVRC2012]
~1.2 M train images
100 K test images
~ 20 K classes

Parameter Space:
Layers: 25
Params: ~ 61 M

~500 MB

NVIDIA Titan (~2700 cores): ~1s/Iter → ~6 Days till convergence
Xeon (single core): ~20s/Iter
ATOM (single core): ~60s/Iter

www.image-net.org/

OUTLOOK

Discussion, Outlook and Advertisement

● Upcoming ASGD DeepLearning Paper
● Multi-Threaded Nodes
● Full evaluation on large scale problems
● Compare to other approaches (Dogwild, ...)
● Caffe brach release

● New GPI2.0 Release 1.2
● supporting GASPI over Ethernet
● Supporting GPU to GPU RDMA communication

● → www.gpi-site.com

[Visit us at Booth 2022]

